18 resultados para Genetic Algorithm for Rule-Set Prediction (GARP)
Resumo:
IMPORTANCE Because effective interventions to reduce hospital readmissions are often expensive to implement, a score to predict potentially avoidable readmissions may help target the patients most likely to benefit. OBJECTIVE To derive and internally validate a prediction model for potentially avoidable 30-day hospital readmissions in medical patients using administrative and clinical data readily available prior to discharge. DESIGN Retrospective cohort study. SETTING Academic medical center in Boston, Massachusetts. PARTICIPANTS All patient discharges from any medical services between July 1, 2009, and June 30, 2010. MAIN OUTCOME MEASURES Potentially avoidable 30-day readmissions to 3 hospitals of the Partners HealthCare network were identified using a validated computerized algorithm based on administrative data (SQLape). A simple score was developed using multivariable logistic regression, with two-thirds of the sample randomly selected as the derivation cohort and one-third as the validation cohort. RESULTS Among 10 731 eligible discharges, 2398 discharges (22.3%) were followed by a 30-day readmission, of which 879 (8.5% of all discharges) were identified as potentially avoidable. The prediction score identified 7 independent factors, referred to as the HOSPITAL score: h emoglobin at discharge, discharge from an o ncology service, s odium level at discharge, p rocedure during the index admission, i ndex t ype of admission, number of a dmissions during the last 12 months, and l ength of stay. In the validation set, 26.7% of the patients were classified as high risk, with an estimated potentially avoidable readmission risk of 18.0% (observed, 18.2%). The HOSPITAL score had fair discriminatory power (C statistic, 0.71) and had good calibration. CONCLUSIONS AND RELEVANCE This simple prediction model identifies before discharge the risk of potentially avoidable 30-day readmission in medical patients. This score has potential to easily identify patients who may need more intensive transitional care interventions.
Resumo:
BACKGROUND Assessment of pre-test probability of pulmonary embolism (PE) and prognostic stratification are two widely recommended steps in the management of patients with suspected PE. Some items of the Geneva prediction rule may have a prognostic value. We analyzed whether the initial probability assessed by the Geneva rule was associated with the outcome of patients with PE. METHODS In a post-hoc analysis of a multicenter trial including 1,693 patients with suspected PE, the all-cause death or readmission rates during the 3-month follow-up of patients with confirmed PE were analyzed. PE probability group was prospectively assessed by the revised Geneva score (RGS). Similar analyses were made with the a posteriori-calculated simplified Geneva score (SGS). RESULTS PE was confirmed in 357 patients and 21 (5.9%) died during the 3-month follow-up. The mortality rate differed significantly with the initial RGS group, as with the SGS group. For the RGS, the mortality increased from 0% (95% Confidence Interval: [0-5.4%]) in the low-probability group to 14.3% (95% CI: [6.3-28.2%]) in the high-probability group, and for the SGS, from 0% (95% CI: [0-5.4%] to 17.9% (95% CI: [7.4-36%]). Readmission occurred in 58 out of the 352 patients with complete information on readmission (16.5%). No significant change of readmission rate was found among the RGS or SGS groups. CONCLUSIONS Returning to the initial PE probability evaluation may help clinicians predict 3-month mortality in patients with confirmed PE. (ClinicalTrials.gov: NCT00117169).
Resumo:
Formative cell divisions are critical for multicellular patterning. In the early plant embryo, such divisions follow from orienting the division plane. A major unanswered question is how division plane orientation is genetically controlled, and in particular whether this relates to cell geometry. We have generated a complete 4D map of early Arabidopsis embryogenesis and used computational analysis to demonstrate that several divisions follow a rule that uses the smallest wall area going through the center of the cell. In other cases, however, cell division clearly deviates from this rule, which invariably leads to asymmetric cell division. By analyzing mutant embryos and through targeted genetic perturbation, we show that response to the hormone auxin triggers a deviation from the ``shortest wall'' rule. Our work demonstrates that a simple default rule couples division orientation to cell geometry in the embryo and that genetic regulation can create patterns by overriding the default rule.