25 resultados para Gay liberation movement -- New Zealand -- History
Resumo:
The study of mass movements in lake sediments provides insights into past natural hazards at historic and prehistoric timescales. Sediments from the deep basin of Lake Geneva reveal a succession of six large-scale (volumes of 22 × 106 to 250 × 106 m3) mass-transport deposits, associated with five mass-movement events within 2600 years (4000 cal bp to 563 ad). The mass-transport deposits result from: (i) lateral slope failures (mass-transport deposit B at 3895 ± 225 cal bp and mass-transport deposits A and C at 3683 ± 128 cal bp); and (ii) Rhône delta collapses (mass-transport deposits D to G dated at 2650 ± 150 cal bp, 2185 ± 85 cal bp, 1920 ± 120 cal bp and 563 ad, respectively). Mass-transport deposits A and C were most probably triggered by an earthquake, whereas the Rhône delta collapses were likely to be due to sediment overload with a rockfall as the external trigger (mass-transport deposit G, the Tauredunum event in 563 ad known from historical records), an earthquake (mass-transport deposit E) or unknown external triggers (mass-transport deposits D and F). Independent of their origin and trigger mechanisms, numerical simulations show that all of these recorded mass-transport deposits are large enough to have generated at least metre-scale tsunamis during mass movement initiation. Since the Tauredunum event in 563 ad, two small-scale (volumes of 1 to 2 × 106 m3) mass-transport deposits (H and I) are present in the seismic record, both of which are associated with small lateral slope failures. Mass-transport deposits H and I might be related to earthquakes in Lausanne/Geneva (possibly) 1322 ad and Aigle 1584 ad, respectively. The sedimentary record of the deep basin of Lake Geneva, in combination with the historical record, show that during the past 3695 years, at least six tsunamis were generated by mass movements, indicating that the tsunami hazard in the Lake Geneva region should not be neglected, although such events are not frequent with a recurrence time of 0·0016 yr−1.
Resumo:
Detrital provenance analyses in orogenic settings, in which sediments are collected at the outlet of a catchment, have become an important tool to estimate how erosion varies in space and time. Here we present how Raman Spectroscopy on Carbonaceous Material (RSCM) can be used for provenance analysis. RSCM provides an estimate of the peak temperature (RSCM-T) experienced during metamorphism. We show that we can infer modern erosion patterns in a catchment by combining new measurements on detrital sands with previously acquired bedrock data. We focus on the Whataroa catchment in the Southern Alps of New Zealand and exploit the metamorphic gradient that runs parallel to the main drainage direction. To account for potential sampling biases, we also quantify abrasion properties using flume experiments and measure the total organic carbon content in the bedrock that produced the collected sands. Finally, we integrate these parameters into a mass-conservative model. Our results first demonstrate that RSCM-T can be used for detrital studies. Second, we find that spatial variations in tracer concentration and erosion have a first-order control on the RSCM-T distributions, even though our flume experiments reveal that weak lithologies produce substantially more fine particles than do more durable lithologies. This result implies that sand specimens are good proxies for mapping spatial variations in erosion when the bedrock concentration of the target mineral is quantified. The modeling suggests that highest present-day erosion rates (in Whataroa catchment) are not situated at the range front but around 10 km into the mountain belt.
Resumo:
River bedload surveyed at 50 sites in Westland is dominated by Alpine Schist or Torlesse Greywacke from the Alpine Fault hanging wall, with subordinate Pounamu Ultramafics or footwall-derived Western Province rocks. Tumbling experiments found ultramafics to have the lowest attrition rates, compared with greywacke sandstone and granite (which abrade to produce silt to medium-sand), or incompetent schist (which fragments). Arahura has greater total concentrations (103–105 t/km2) and proportions (5–40%) of ultramafic bedload compared with Hokitika and Taramakau catchments (101–104 t/km2, mostly <10%), matching relative areas of mapped Pounamu Ultramafic bedrock, but enriched relative to absolute areal proportions. Western Province rocks downthrown by the Alpine Fault are under-represented in the bedload. Enriched concentrations of ultramafic bedload decrease rapidly with distance downstream from source rock outcrops, changing near prominent ice-limit moraines. Bedload evolution with transport involves both downstream fining and dilution from tributaries, in a sediment supply regime more strongly influenced by tectonics and the imprint of past glaciation. Treasured New Zealand pounamu (jade) is associated with ultramafic rocks. Chances of discovery vary between catchments, are increased near glacial moraines, and are highest near source-rock outcrops in remote mountain headwaters.