31 resultados para GLUON CONDENSATE
Resumo:
The value of measurements of eicosanoids in exhaled breath condensate (EBC) for the evaluation of childhood asthma is still inconclusive most likely because of the limited value of the methods used. In this case-control study in 48 asthmatic and 20 healthy children, we aimed to characterize the baseline profile of the inflammatory mediators cysteinyl leukotrienes (cysLTs), 9(alpha)11(beta)PGF(2), PGE(2), PGF(2alpha), 8-isoprostane (8-iso-PGF(2alpha)) within EBC in asthmatic compared with healthy children using new methods. In addition, we investigated their relation to other inflammatory markers. The assessment included collection of EBC, measurement of fractional exhaled nitric oxide (FE(NO)) and evaluation of urinary excretion of leukotriene E(4.) cysLTs were measured directly in EBC by radioimmunoassay and prostanoids were measured using gas chromatography negative-ion chemical ionization mass spectrometry. Only cysLT levels were significantly higher in asthmatic compared with healthy children (p = 0.002). No significant differences in cysLTs were found between steroid naïve and patients receiving inhaled corticosteroids. In contrast, FE(NO) was significantly higher in steroid naïve compared with steroid-treated asthmatic and healthy children (p = 0.04 and 0.024, respectively). The diagnostic accuracy of cysLTs in EBC for asthma was 73.6% for the whole group and 78.2% for steroid-naïve asthmatic children. The accuracy to classify asthmatic for FE(NO) was poor (62.9%) for the whole group, but improved to 79.9% when only steroid-naïve asthmatic children were taken into consideration. cysLTs in EBC is an inflammatory marker which distinguishes asthmatics, as a whole group, from healthy children.
Resumo:
Using methods from effective field theory, we have recently developed a novel, systematic framework for the calculation of the cross sections for electroweak gauge-boson production at small and very small transverse momentum q T , in which large logarithms of the scale ratio m V /q T are resummed to all orders. This formalism is applied to the production of Higgs bosons in gluon fusion at the LHC. The production cross section receives logarithmically enhanced corrections from two sources: the running of the hard matching coefficient and the collinear factorization anomaly. The anomaly leads to the dynamical generation of a non-perturbative scale q∗~mHe−const/αs(mH)≈8 GeV, which protects the process from receiving large long-distance hadronic contributions. We present numerical predictions for the transverse-momentum spectrum of Higgs bosons produced at the LHC, finding that it is quite insensitive to hadronic effects.
Resumo:
The chemical equilibration of heavy quarks in a quark-gluon plasma proceeds via annihilation or pair creation. For temperatures T much below the heavy quark mass M, when kinetically equilibrated heavy quarks move very slowly, the annihilation in the colour singlet channel is enhanced because the quark and antiquark attract each other which increases their probability to meet, whereas the octet contribution is suppressed. This is the so-called Sommerfeld effect. It has not been taken into account in previous calculations of the chemical equilibration rate, which are therefore incomplete for T ≲ α2sM . We compute the leading-order equilibration rate in this regime; there is a large enhancement in the singlet channel, but the rate is dominated by the octet channel, and therefore the total effect is small. In the course of the computation we demonstrate how operators that represent the annihilation of heavy quarks in non-relativistic QCD can be incorporated into the imaginary-time formalism.
Resumo:
The distributions of event-by-event harmonic flow coefficients v_n for n=2-4 are measured in sqrt(s_NN)=2.76 TeV Pb+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using charged particles with transverse momentum pT> 0.5 GeV and in the pseudorapidity range |eta|<2.5 in a dataset of approximately 7 ub^-1 recorded in 2010. The shapes of the v_n distributions are described by a two-dimensional Gaussian function for the underlying flow vector in central collisions for v_2 and over most of the measured centrality range for v_3 and v_4. Significant deviations from this function are observed for v_2 in mid-central and peripheral collisions, and a small deviation is observed for v_3 in mid-central collisions. It is shown that the commonly used multi-particle cumulants are insensitive to the deviations for v_2. The v_n distributions are also measured independently for charged particles with 0.5
Resumo:
A search for resonances produced in 7 TeV proton-proton collisions and decaying into top-quark pairs is described. In this Letter events where the top-quark decay produces two massive jets with large transverse momenta recorded with the ATLAS detector at the Large Hadron Collider are considered. Two techniques that rely on jet substructure are used to separate top-quark jets from those arising from light quarks and gluons. In addition, each massive jet is required to have evidence of an associated bottom-quark decay. The data are consistent with the Standard Model, and limits can be set on the production cross section times branching fraction of a Z' boson and a Kaluza-Klein gluon resonance. These limits exclude, at the 95% credibility level, Z' bosons with masses 0.70-1.00 TeV as well as 1.28-1.32 TeV and Kaluza-Klein gluons with masses 0.70-1.62 TeV.
Resumo:
This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at root s = 7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb(-1). Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity vertical bar y vertical bar < 2.1. The fit results agree with the predictions of leading-and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e. g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions.
Resumo:
Studies of the spin and parity quantum numbers of the Higgs boson are presented, based on protonproton collision data collected by the ATLAS experiment at the LHC. The Standard Model spin-parity J(P) = 0(+) hypothesis is compared with alternative hypotheses using the Higgs boson decays H -> gamma gamma, H -> ZZ* -> 4l and H -> WW* -> l nu l nu, as well as the combination of these channels. The analysed dataset corresponds to an integrated luminosity of 20.7 fb(-1) collected at a centre-of-mass energy of root s = 8 TeV. For the H -> ZZ* -> 4l decay mode the dataset corresponding to an integrated luminosity of 4.6 fb(-1) collected at root s = 7 TeV is included. The data are compatible with the Standard Model J(P) = 0+ quantum numbers for the Higgs boson, whereas all alternative hypotheses studied in this Letter, namely some specific J(P) = 0(-), 1(+), 1(-), 2(+) models, are excluded at confidence levels above 97.8%. This exclusion holds independently of the assumptions on the coupling strengths to the Standard Model particles and in the case of the J(P) = 2(+) model, of the relative fractions of gluon-fusion and quark-antiquark production of the spin-2 particle. The data thus provide evidence for the spin-0 nature of the Higgs boson, with positive parity being strongly preferred.
Resumo:
A search for new particles that decay into top quark pairs (t (t) over bar) is performed with the ATLAS experiment at the LHC using an integrated luminosity of 4.7 fb(-1) of proton-proton (pp) collision data collected at a center-of-mass energy root s = 7 TeV. In the t (t) over bar) -> WbWb decay, the lepton plus jets final state is used, where one W boson decays leptonically and the other hadronically. The t (t) over bar) system is reconstructed using both small-radius and large-radius jets, the latter being supplemented by a jet substructure analysis. A search for local excesses in the number of data events compared to the Standard Model expectation in the t (t) over bar) invariant mass spectrum is performed. No evidence for a t (t) over bar) resonance is found and 95% credibility-level limits on the production rate are determined for massive states predicted in two benchmark models. The upper limits on the cross section times branching ratio of a narrow Z' resonance range from 5.1 pb for a boson mass of 0.5 TeV to 0.03 pb for a mass of 3 TeV. A narrow leptophobic topcolor Z' resonance with a mass below 1.74 TeV is excluded. Limits are also derived for a broad color-octet resonance with m 15.3%. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.07 TeV.
Resumo:
A search for pair-produced massive coloured scalar particles decaying to a four-jet final state is performed by the ATLAS experiment at the LHC in proton-proton collisions at root s = 7 TeV. The analysed data sample corresponds to an integrated luminosity of 4.6 fb(-1). No deviation from the Standard Model is observed in the invariant mass spectrum of the two-jet pairs. A limit on the scalar gluon pair production cross section of 70 pb (10 pb) is obtained at the 95 % confidence level for a scalar gluon mass of 150 GeV (350 GeV). Interpreting these results as mass limits on scalar gluons, masses ranging from 150 GeV to 287 GeV are excluded at the 95 % confidence level.
Resumo:
We calculate the O(αs) corrections to the double differential decay width dΓ77/(ds1ds2) for the process B¯→Xsγγ, originating from diagrams involving the electromagnetic dipole operator O7. The kinematical variables s1 and s2 are defined as si=(pb−qi)2/m2b, where pb, q1, q2 are the momenta of the b quark and two photons. We introduce a nonzero mass ms for the strange quark to regulate configurations where the gluon or one of the photons become collinear with the strange quark and retain terms which are logarithmic in ms, while discarding terms which go to zero in the limit ms→0. When combining virtual and bremsstrahlung corrections, the infrared and collinear singularities induced by soft and/or collinear gluons drop out. By our cuts the photons do not become soft, but one of them can become collinear with the strange quark. This implies that in the final result a single logarithm of ms survives. In principle, the configurations with collinear photon emission could be treated using fragmentation functions. In a related work we find that similar results can be obtained when simply interpreting ms appearing in the final result as a constituent mass. We do so in the present paper and vary ms between 400 and 600 MeV in the numerics. This work extends a previous paper by us, where only the leading power terms with respect to the (normalized) hadronic mass s3=(pb−q1−q2)2/m2b were taken into account in the underlying triple differential decay width dΓ77/(ds1ds2ds3).
Resumo:
We review the failure of lowest order chiral SU(3)L ×SU(3)R perturbation theory χPT3 to account for amplitudes involving the f0(500) resonance and O(mK) extrapolations in momenta. We summarize our proposal to replace χPT3 with a new effective theory χPTσ based on a low-energy expansion about an infrared fixed point in 3-flavour QCD. At the fixed point, the quark condensate ⟨q̅q⟩vac ≠ 0 induces nine Nambu-Goldstone bosons: π,K,η and a QCD dilaton σ which we identify with the f0(500) resonance. We discuss the construction of the χPTσ Lagrangian and its implications for meson phenomenology at low-energies. Our main results include a simple explanation for the ΔI = 1/2 rule in K-decays and an estimate for the Drell-Yan ratio in the infrared limit.
Resumo:
A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb −1 of proton-proton collisions data at s √ =7 TeV and 20.3 fb −1 at s √ =8 TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be μ=1.17±0.27 at the value of the Higgs boson mass measured by ATLAS, m H =125.4 GeV . The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of m H . They are found to be μ ggF =1.32±0.38 , μ VBF =0.8±0.7 , μ WH =1.0±1.6 , μ ZH =0.1 +3.7 −0.1 , and μ tt ¯ H =1.6 +2.7 −1.8 , for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.
Resumo:
Among resummation techniques for perturbative QCD in the context of collider and flavor physics, soft-collinear effective theory (SCET) has emerged as both a powerful and versatile tool, having been applied to a large variety of processes, from B-meson decays to jet production at the LHC. This book provides a concise, pedagogical introduction to this technique. It discusses the expansion of Feynman diagrams around the high-energy limit, followed by the explicit construction of the effective Lagrangian - first for a scalar theory, then for QCD. The underlying concepts are illustrated with the quark vector form factor at large momentum transfer, and the formalism is applied to compute soft-gluon resummation and to perform transverse-momentum resummation for the Drell-Yan process utilizing renormalization group evolution in SCET. Finally, the infrared structure of n-point gauge-theory amplitudes is analyzed by relating them to effective-theory operators. This text is suitable for graduate students and non-specialist researchers alike as it requires only basic knowledge of perturbative QCD.
Resumo:
SU(2) gauge theory with one Dirac flavor in the adjoint representation is investigated on a lattice. Initial results for the gluonic and mesonic spectrum, static potential from Wilson and Polyakov loops, and the anomalous dimension of the fermionic condensate from the Dirac mode number are presented. The results found are not consistent with conventional confining behavior, pointing instead tentatively towards a theory lying within or very near the onset of the conformal window, with the anomalous dimension of the fermionic condensate in the range 0.9≲γ∗≲0.95. The implications of our work for building a viable theory of strongly interacting dynamics beyond the standard model are discussed.
Resumo:
With the physical Higgs mass the standard model symmetry restoration phase transition is a smooth cross-over. We study the thermodynamics of the cross-over using numerical lattice Monte Carlo simulations of an effective SU(2)×U(1) gauge+Higgs theory, significantly improving on previously published results. We measure the Higgs field expectation value, thermodynamic quantities like pressure, energy density, speed of sound and heat capacity, and screening masses associated with the Higgs and Z fields. While the cross-over is smooth, it is very well defined with a width of only ∼5 GeV. We measure the cross-over temperature from the maximum of the susceptibility of the Higgs condensate, with the result Tc=159.5±1.5 GeV. Outside of the narrow cross-over region the perturbative results agree well with nonperturbative ones.