90 resultados para Frontal cortex
Resumo:
Antisocial and violent behaviour have been associated with both structural and functional brain abnormalities in the frontal and the temporal lobes. The aim of the present study was to assess cortical thickness in offenders undergoing forensic psychiatric assessments, one group with psychopathy (PSY, n=7) and one group with autism spectrum disorder (ASD, n=7) compared to each other as well as to a reference group consisting of healthy non-criminal subjects (RG, n=12). A second aim was to assess correlation between scores on a psychopathy checklist (PCL-SV) and cortical thickness. Magnetic resonance imaging (MRI) and surface-based cortical segmentation were used to calculate cortical thickness. Analyses used both regions of interest and statistical maps. When the two groups of offenders were compared, there were no differences in cortical thickness, but the PSY group had thinner cortex in the temporal lobes and in the whole right hemisphere compared to RG. There were no differences in cortical thickness between the ASD group and RG. Across subjects there was a negative correlation between PCL-SV scores and cortical thickness in the temporal lobes and the whole right hemisphere. The findings indicate that thinner cortex in the temporal lobes is present in psychopathic offenders and that these regions are important for the expression of psychopathy. However, whether thinner temporal cortex is a cause or a consequence of the antisocial behaviour is still unknown.
Resumo:
Visual imagery – similar to visual perception – activates feature-specific and category-specific visual areas. This is frequently observed in experiments where the instruction is to imagine stimuli that have been shown immediately before the imagery task. Hence, feature-specific activation could be related to the short-term memory retrieval of previously presented sensory information. Here, we investigated mental imagery of stimuli that subjects had not seen before, eliminating the effects of short-term memory. We recorded brain activation using fMRI while subjects performed a behaviourally controlled guided imagery task in predefined retinotopic coordinates to optimize sensitivity in early visual areas. Whole brain analyses revealed activation in a parieto-frontal network and lateral–occipital cortex. Region of interest (ROI) based analyses showed activation in left hMT/V5+. Granger causality mapping taking left hMT/V5+ as source revealed an imagery-specific directed influence from the left inferior parietal lobule (IPL). Interestingly, we observed a negative BOLD response in V1–3 during imagery, modulated by the retinotopic location of the imagined motion trace. Our results indicate that rule-based motion imagery can activate higher-order visual areas involved in motion perception, with a role for top-down directed influences originating in IPL. Lower-order visual areas (V1, V2 and V3) were down-regulated during this type of imagery, possibly reflecting inhibition to avoid visual input from interfering with the imagery construction. This suggests that the activation in early visual areas observed in previous studies might be related to short- or long-term memory retrieval of specific sensory experiences.
Resumo:
Altered frontal white matter integrity has been reported in major depression. Still, the behavioral correlates of these alterations are not established. In healthy subjects, motor activity correlated with white matter integrity in the motor system. To explore the relation of white matter integrity and motor activity in major depressive disorder, we investigated 21 medicated patients with major depressive disorder and 21 matched controls using diffusion tensor imaging and wrist actigraphy at the same day. Patients had lower activity levels (AL) compared with controls. Fractional anisotropy (FA) differed between groups in frontal white matter regions and the posterior cingulum. AL was linearly associated with white matter integrity in two clusters within the motor system. Controls had an exclusive positive association of FA and AL in white matter underneath the right dorsal premotor cortex. Only patients had a positive association within the posterior cingulum. Furthermore, patients had negative associations of FA and AL underneath the left primary motor cortex and within the left parahippocampal gyrus white matter. These differences in the associations between structure and behavior may contribute to well-known impaired motor planning or gait disturbances in major depressive disorder. Therefore, signs of psychomotor slowing in major depressive disorder may be linked to changes of the white matter integrity of the motor system.
Resumo:
Gestures are important for nonverbal communication and were shown to be impaired in schizophrenia. Two categories of gestures can be differentiated: pantomime on verbal command and imitation of seen gestures. There is evidence that the neural basis of these domains may be distinct, pantomime being critically dependent on prefrontal cortex function. The aim of the study was to investigate gestural deficits in schizophrenia and their association with frontal lobe function and motor performance.
Resumo:
The aim of the study was to compare the effect duration of two different protocols of repetitive transcranial magnetic stimulation (rTMS) on saccade triggering. In four experiments, two regions (right frontal eye field (FEF) and vertex) were stimulated using a 1-Hz and a theta burst protocol (three 30Hz pulses repeated at intervals of 100ms). The same number of TMS pulses (600 pulses) was applied with stimulation strength of 80% of the resting motor threshold for hand muscles. Following stimulation the subjects repeatedly performed an oculomotor task using a modified overlap paradigm, and saccade latencies were measured over a period of 60min. The results show that both 1-Hz and theta burst stimulation had inhibitory effects on saccade triggering when applied over the FEF, but not over the vertex. One-hertz rTMS significantly increased saccade latencies over a period of about 8min. After theta burst rTMS, this effect lasted up to 30min. Furthermore, the decay of rTMS effects was protocol-specific: After 1-Hz stimulation, saccade latencies returned to a baseline level much faster than after theta burst stimulation. We speculate that these time course differences represent distinct physiological mechanisms of how TMS interacts with brain function.
Resumo:
Situationally adaptive behavior relies on the identification of relevant target stimuli, the evaluation of these with respect to the current context and the selection of an appropriate action. We used functional magnetic resonance imaging (fMRI) to disentangle the neural networks underlying these processes within a single task. Our results show that activation of mid-ventrolateral prefrontal cortex (PFC) reflects the perceived presence of a target stimulus regardless of context, whereas context-appropriate evaluation is subserved by mid-dorsolateral PFC. Enhancing demands on response selection by means of response conflict activated a network of regions, all of which are directly connected to motor areas. On the midline, rostral anterior paracingulate cortex was found to link target detection and response selection by monitoring for the presence of behaviorally significant conditions. In summary, we provide new evidence for process-specific functional dissociations in the frontal lobes. In target-centered processing, target detection in the VLPFC is separable from contextual evaluation in the DLPFC. Response-centered processing in motor-associated regions occurs partly in parallel to these processes, which may enhance behavioral efficiency, but it may also lead to reaction time increases when an irrelevant response tendency is elicited.
Resumo:
The present study investigated the role of the right posterior parietal cortex (PPC) in the triggering of memory-guided saccades by means of double-pulse transcranial magnetic stimulation (dTMS). Shortly before saccade onset, dTMS with different interstimulus intervals (ISI; 35, 50, 65 or 80 ms) was applied. For contralateral saccades, dTMS significantly decreased saccadic latency with an ISI of 80 ms and increased saccadic gain with an ISI of 65 and 80 ms. Together with the findings of a previous study during frontal eye field (FEF) stimulation the present results demonstrate similarities and differences between both regions in the execution of memory-guided saccades. Firstly, dTMS facilitates saccade triggering in both regions, but the timing is different. Secondly, dTMS over the PPC provokes a hypermetria of contralateral memory-guided saccades that was not observed during FEF stimulation. The results are discussed within the context of recent neurophysiological findings in monkeys.
Resumo:
Recent studies suggest that lucid dreaming (awareness of dreaming while dreaming) might be associated with increased brain activity over frontal regions during rapid eye movement (REM) sleep. By applying transcranial direct current stimulation (tDCS), we aimed to manipulate the activation of the dorsolateral prefrontal cortex (DLPFC) during REM sleep to induce lucid dreaming. Nineteen participants spent three consecutive nights in a sleep laboratory. On the second and third nights they randomly received either 1 mA tDCS for 10 min or sham stimulation during each REM period starting with the second one. According to the participants' self-ratings, tDCS over the DLPFC during REM sleep increased lucidity in dreams. The effects, however, were not strong and found only in frequent lucid dreamers. While this indicates some preliminary support for the involvement of the DLPFC in lucid dreaming, further research, controlling for indirect effects of stimulation and including other brain regions, is needed.
Resumo:
The study investigated the influence of double-pulse transcranial magnetic stimulation (dTMS) on memory-guided saccade triggering. Double pulses with interstimulus intervals (ISIs) of 35, 50, 65 or 80 ms were applied over the right frontal eye field (FEF) and as control over the occipital cortex. A significant dTMS effect was found exclusively for contralateral saccades; latency of memory-guided saccades was reduced after FEF stimulation with an ISI of 50 ms compared to latency without stimulation. This effect proved to be specific for the ISI of 50 ms over the FEF because control stimulation with the same ISI over the occipital cortex had no significant effect on latency of memory-guided saccades. The results of our study showed that, by using an appropriate ISI, dTMS is able to facilitate contralateral saccade triggering by stimulating the FEF. This suggests that TMS interferes specifically with saccade triggering mechanisms, probably by acting on presaccadic neurons of the FEF.
Resumo:
The purpose of this study was to investigate the role of the fronto–striatal system for implicit task sequence learning. We tested performance of patients with compromised functioning of the fronto–striatal loops, that is, patients with Parkinson's disease and patients with lesions in the ventromedial or dorsolateral prefrontal cortex. We also tested amnesic patients with lesions either to the basal forebrain/orbitofrontal cortex or to thalamic/medio-temporal regions. We used a task sequence learning paradigm involving the presentation of a sequence of categorical binary-choice decision tasks. After several blocks of training, the sequence, hidden in the order of tasks, was replaced by a pseudo-random sequence. Learning (i.e., sensitivity to the ordering) was assessed by measuring whether this change disrupted performance. Although all the patients were able to perform the decision tasks quite easily, those with lesions to the fronto–striatal loops (i.e., patients with Parkinson's disease, with lesions in the ventromedial or dorsolateral prefrontal cortex and those amnesic patients with lesions to the basal forebrain/orbitofrontal cortex) did not show any evidence of implicit task sequence learning. In contrast, those amnesic patients with lesions to thalamic/medio-temporal regions showed intact sequence learning. Together, these results indicate that the integrity of the fronto–striatal system is a prerequisite for implicit task sequence learning.
Resumo:
In the antisaccade task, subjects are requested to suppress a reflexive saccade towards a visual target and to perform a saccade towards the opposite side. In addition, in order to reproduce an accurate saccadic amplitude, the visual saccade vector (i.e., the distance between a central fixation point and the peripheral target) must be exactly inverted from one visual hemifield to the other. Results from recent studies using a correlational approach (i.e., fMRI, MEG) suggest that not only the posterior parietal cortex (PPC) but also the frontal eye field (FEF) might play an important role in such a visual vector inversion process. In order to assess whether the FEF contributes to visual vector inversion, we applied an interference approach with continuous theta burst stimulation (cTBS) during a memory-guided antisaccade task. In 10 healthy subjects, one train of cTBS was applied over the right FEF prior to a memory-guided antisaccade task. In comparison to the performance without stimulation or with sham stimulation, cTBS over the right FEF induced a hypometric gain for rightward but not leftward antisaccades. These results obtained with an interference approach confirm that the FEF is also involved in the process of visual vector inversion.
Resumo:
BACKGROUND Psychomotor disturbances are a main clinical feature of major depressive disorder (MDD) but little is known about their EEG signature. One of the most replicated EEG findings in MDD is resting frontal asymmetry in the alpha band (FAA), which is thought to be a correlate of withdrawal behavior and reduced approach motivation. The purpose of this study was to assess psychomotor alterations, alpha band power, FAA and investigate the association between them. METHODS 20 MDD patients and 19 healthy subjects were enrolled. Alpha power and FAA scores were calculated from a resting state EEG. Wrist actigraphy was recorded from the non-dominant arm for 24 h and activity level scores (AL) were extrapolated from the wakeful periods. RESULTS MDD patients had a left-lateralized frontal alpha activity and lower AL scores when compared to healthy subjects. A significant correlation was found between mean FAA and AL scores. A negative covariance between power in the lower alpha range and AL scores over the motor cortex bilaterally was detected. LIMITATIONS Relatively small sample size. Patients were pharmacologically treated with antidepressants. CONCLUSIONS This study replicates the finding of left-lateralized FAA and lower AL scores in MDD patients, and establishes the first evidence of significant correlations between alpha power, FAA scores and measures of motor activity, which may be interpreted as an expression of impaired motivational drive in MDD.
Resumo:
Background Action observation leads to neural activation of the human premotor cortex. This study examined how the level of motor expertise (expert vs. novice) in ballroom dancing and the visual viewpoint (internal vs. external viewpoint) influence this activation within different parts of this area of the brain. Results Sixteen dance experts and 16 novices observed ballroom dance videos from internal or external viewpoints while lying in a functional magnetic resonance imaging scanner. A conjunction analysis of all observation conditions showed that action observation activated distinct networks of premotor, parietal, and cerebellar structures. Experts revealed increased activation in the ventral premotor cortex compared to novices. An internal viewpoint led to higher activation of the dorsal premotor cortex. Conclusions The present results suggest that the ventral and dorsal premotor cortex adopt differential roles during action observation depending on the level of motor expertise and the viewpoint.