52 resultados para Frequency range selection


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phase locking or synchronization of brain areas is a key concept of information processing in the brain. Synchronous oscillations have been observed and investigated extensively in EEG during the past decades. EEG oscillations occur over a wide frequency range. In EEG, a prominent type of oscillations is alpha-band activity, present typically when a subject is awake, but at rest with closed eyes. The spectral power of alpha rhythms has recently been investigated in simultaneous EEG/fMRI recordings, establishing a wide-range cortico-thalamic network. However, spectral power and synchronization are different measures and little is known about the correlations between BOLD effects and EEG synchronization. Interestingly, the fMRI BOLD signal also displays synchronous oscillations across different brain regions. These oscillations delineate so-called resting state networks (RSNs) that resemble the correlation patterns of simultaneous EEG/fMRI recordings. However, the nature of these BOLD oscillations and their relations to EEG activity is still poorly understood. One hypothesis is that the subunits constituting a specific RSN may be coordinated by different EEG rhythms. In this study we report on evidence for this hypothesis. The BOLD correlates of global EEG synchronization (GFS) in the alpha frequency band are located in brain areas involved in specific RSNs, e.g. the 'default mode network'. Furthermore, our results confirm the hypothesis that specific RSNs are organized by long-range synchronization at least in the alpha frequency band. Finally, we could localize specific areas where the GFS BOLD correlates and the associated RSN overlap. Thus, we claim that not only the spectral dynamics of EEG are important, but also their spatio-temporal organization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both inter- and intrasexual selection have been implicated in the origin and maintenance of species-rich taxa with diverse sexual traits. Simultaneous disruptive selection by female mate choice and male-male competition can, in theory, lead to speciation without geographical isolation if both act on the same male trait. Female mate choice can generate discontinuities in gene flow, while male-male competition can generate negative frequency-dependent selection stabilizing the male trait polymorphism. Speciation may be facilitated when mating preference and/or aggression bias are physically linked to the trait they operate on. We tested for genetic associations among female mating preference, male aggression bias and male coloration in the Lake Victoria cichlid Pundamilia. We crossed females from a phenotypically variable population with males from both extreme ends of the phenotype distribution in the same population (blue or red). Male offspring of a red sire were significantly redder than males of a blue sire, indicating that intra-population variation in male coloration is heritable. We tested mating preferences of female offspring and aggression biases of male offspring using binary choice tests. There was no evidence for associations at the family level between female mating preferences and coloration of sires, but dam identity had a significant effect on female mate preference. Sons of the red sire directed significantly more aggression to red than blue males, whereas sons of the blue sire did not show any bias. There was a positive correlation among individuals between male aggression bias and body coloration, possibly due to pleiotropy or physical linkage, which could facilitate the maintenance of color polymorphism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An ascent to altitude has been shown to result in more central apneas and a shift towards lighter sleep in healthy individuals. This study employs spectral analysis to investigate the impact of respiratory disturbances (central/obstructive apnea and hypopnea or periodic breathing) at moderate altitude on the sleep electroencephalogram (EEG) and to compare EEG changes resulting from respiratory disturbances and arousals. Data were collected from 51 healthy male subjects who spent 1 night at moderate altitude (2590 m). Power density spectra of Stage 2 sleep were calculated in a subset (20) of these participants with sufficient artefact-free data for (a) epochs with respiratory events without an accompanying arousal, (b) epochs containing an arousal and (c) epochs of undisturbed Stage 2 sleep containing neither arousal nor respiratory events. Both arousals and respiratory disturbances resulted in reduced power in the delta, theta and spindle frequency range and increased beta power compared to undisturbed sleep. The similarity of the EEG changes resulting from altitude-induced respiratory disturbances and arousals indicates that central apneas are associated with micro-arousals, not apparent by visual inspection of the EEG. Our findings may have implications for sleep in patients and mountain tourists with central apneas and suggest that respiratory disturbances not accompanied by an arousal may, none the less, impact sleep quality and impair recuperative processes associated with sleep more than previously believed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TEMPERA (TEMPERature RAdiometer) is a new ground-based radiometer which measures in a frequency range from 51–57 GHz radiation emitted by the atmosphere. With this instrument it is possible to measure temperature profiles from ground to about 50 km. This is the first ground-based instrument with the capability to retrieve temperature profiles simultaneously for the troposphere and stratosphere. The measurement is done with a filterbank in combination with a digital fast Fourier transform spectrometer. A hot load and a noise diode are used as stable calibration sources. The optics consist of an off-axis parabolic mirror to collect the sky radiation. Due to the Zeeman effect on the emission lines used, the maximum height for the temperature retrieval is about 50 km. The effect is apparent in the measured spectra. The performance of TEMPERA is validated by comparison with nearby radiosonde and satellite data from the Microwave Limb Sounder on the Aura satellite. In this paper we present the design and measurement method of the instrument followed by a description of the retrieval method, together with a validation of TEMPERA data over its first year, 2012.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deceptive Iris lutescens (Iridaceae) shows a heritable and striking flower colour polymorphism, with both yellow- and purple-flowered individuals growing sympatrically. Deceptive species with flower colour polymorphism are mainly described in the family Orchidaceae and rarely found in other families. To explain the maintenance of flower colour polymorphism in I.lutescens, we investigated female reproductive success in natural populations of southern France, at both population and local scales (within populations). Female reproductive success was positively correlated with yellow morph frequency, at both the population scale and the local scale. Therefore, we failed to observe negative frequency-dependent selection (NFDS), a mechanism commonly invoked to explain flower colour polymorphism in deceptive plant species. Flower size and local flower density could also affect female reproductive success in natural populations. Pollinator behaviour could explain the positive effect of the yellow morph, and our results suggest that flower colour polymorphism might not persist in I.lutescens, but alternative explanations not linked to pollinator behaviour are discussed. In particular, NFDS, although an appealingly simple explanation previously demonstrated in orchids, may not always contribute to maintaining flower colour polymorphism, even in deceptive species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

After stroke, the injured brain undergoes extensive reorganization and reconnection. Sleep may play a role in synaptic plasticity underlying stroke recovery. To test this hypothesis, we investigated topographic sleep electroencephalographic characteristics, as a measure of brain reorganization, in the acute and chronic stages after hemispheric stroke. We studied eight patients with unilateral stroke in the supply territory of the middle cerebral artery and eight matched controls. All subjects underwent a detailed clinical examination including assessment of stroke severity, sleep habits and disturbances, anxiety and depression, and high-density electroencephalogram examination with 128 electrodes during sleep. The recordings were performed within 10 days after stroke in all patients, and in six patients also 3 months later. During sleep, we found higher slow-wave and theta activity over the affected hemisphere in the infarct area in the acute and chronic stage of stroke. Slow-wave, theta activity and spindle frequency range power over the affected hemisphere were lower in comparison to the non-affected side in a peri-infarct area in the patients' group, which persisted over time. Conversely, in wakefulness, only an increase of delta, theta activity and a slowing of alpha activity over the infarct area were found. Sleep slow-wave activity correlated with stroke severity and outcome. Stroke might have differential effects on the generation of delta activity in wakefulness and sleep slow waves (1-8 Hz). Sleep electroencephalogram changes over both the affected and non-affected hemispheres reflect the acute dysfunction caused by stroke and the plastic changes underlying its recovery. Moreover, these changes correlate with stroke severity and outcome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Microwave Emission Model of Layered Snowpacks (MEMLS) was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS) is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment) campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Range expansions are extremely common, but have only recently begun to attract attention in terms of their genetic consequences. As populations expand, demes at the wave front experience strong genetic drift, which is expected to reduce genetic diversity and potentially cause ‘allele surfing’, where alleles may become fixed over a wide geographical area even if their effects are deleterious. Previous simulation models show that range expansions can generate very strong selective gradients on dispersal, reproduction, competition and immunity. To investigate the effects of range expansion on genetic diversity and adaptation, we studied the population genomics of the bank vole (Myodes glareolus) in Ireland. The bank vole was likely introduced in the late 1920s and is expanding its range at a rate of ~2.5 km/year. Using genotyping-by-sequencing, we genotyped 281 bank voles at 5979 SNP loci. Fourteen sample sites were arranged in three transects running from the introduction site to the wave front of the expansion. We found significant declines in genetic diversity along all three transects. However, there was no evidence that sites at the wave front had accumulated more deleterious mutations. We looked for outlier loci with strong correlations between allele frequency and distance from the introduction site, where the direction of correlation was the same in all three transects. Amongst these outliers, we found significant enrichment for genic SNPs, suggesting the action of selection. Candidates for selection included several genes with immunological functions and several genes that could influence behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A genetic deficiency of the cysteine protease cathepsin L (Ctsl) in mice results in impaired positive selection of conventional CD4+ T helper cells as a result of an incomplete processing of the MHC class II associated invariant chain or incomplete proteolytic generation of positively selecting peptide ligands. The human genome encodes, in contrast to the mouse genome, for two cathepsin L proteases, namely cathepsin L (CTSL) and cathepsin V (CTSV; alternatively cathepsin L2). In the human thymic cortex, CTSV is the predominately expressed protease as compared to CTSL or other cysteine cathepsins. In order to analyze the functions of CTSL and CTSV in the positive selection of CD4+ T cells we employed Ctsl knock-out mice crossed either with transgenic mice expressing CTSL under the control of its genuine human promoter or with transgenic mice expressing CTSV under the control of the keratin 14 (K14) promoter, which drives expression to the cortical epithelium. Both human proteases are expressed in the thymus of the transgenic mice, and independent expression of both CTSL and CTSV rescues the reduced frequency of CD4+ T cells in Ctsl-deficient mice. Moreover, the expression of the human cathepsins does not change the number of CD4+CD25+Foxp3+ regulatory T cells, but the normalization of the frequency of conventional CD4+ T cell in the transgenic mice results in a rebalancing of conventional T cells and regulatory T cells. We conclude that the functional differences of CTSL and CTSV in vivo are not mainly determined by their inherent biochemical properties, but rather by their tissue specific expression pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: As a previous study revealed, arts speech therapy (AST) affects cardiorespiratory interaction [1]. The aim of the present study was to investigate whether AST also has effects on brain oxygenation and hemodynamics measured non-invasively using near-infrared spectroscopy (NIRS). Material and methods: NIRS measurements were performed on 17 subjects (8 men and 9 women, mean age: 35.6 ± 12.7 y) during AST. Each measurement lasted 35 min, comprising 8 min pre-baseline, 10 min recitation and 20 min post-baseline. For each subject, measurements were performed for three different AST recitation tasks (recitation of alliterative, hexameter and prose verse). Relative concentration changes of oxyhemoglobin (Δ[O2Hb]) and deoxyhemoglobin (Δ[HHb]) as well as the tissue oxygenation index (TOI) were measured using a Hamamatsu NIRO300 NIRS device and a sensor placed on the subjects forehead. Movement artifacts were removed using a novel method [2]. Statistical analysis (Wilcoxon test) was applied to the data to investigate (i) if the recitation causes changes in the median values and/or in the Mayer wave power spectral density (MW-PSD, range: 0.07–0.13 Hz) of Δ[O2Hb], Δ[HHb] or TOI, and (ii) if these changes vary between the 3 recitation forms. Results: For all three recitation styles a significant (p < 0.05) decrease in Δ[O2Hb] and TOI was found, indicating a decrease in blood flow. These decreases did not vary significantly between the three styles. MW-PSD increased significantly for Δ[O2Hb] when reciting the hexameter and prose verse, and for Δ[HHb] and TOI when reciting alliterations and hexameter, representing an increase in Mayer waves. The MW-PSD increase for Δ[O2Hb] was significantly larger for the hexameter verse compared to alliterative and prose verse Conclusion: The study showed that AST affects brain hemodynamics (oxygenation, blood flow and Mayer waves). Recitation caused a significant decrease in cerebral blood flow for all recitation styles as well as an increase in Mayer waves, particularly for the hexameter, which may indicate a sympathetic activation. References 1. D. Cysarz, D. von Bonin, H. Lackner, P. Heusser, M. Moser, H. Bettermann. Am J Physiol Heart Circ Physiol, 287 (2) (2004), pp. H579–H587 2. F. Scholkmann, S. Spichtig, T. Muehlemann, M. Wolf. Physiol Meas, 31 (5) (2010), pp. 649–662

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topographically organized neurons represent multiple stimuli within complex visual scenes and compete for subsequent processing in higher visual centers. The underlying neural mechanisms of this process have long been elusive. We investigate an experimentally constrained model of a midbrain structure: the optic tectum and the reciprocally connected nucleus isthmi. We show that a recurrent antitopographic inhibition mediates the competitive stimulus selection between distant sensory inputs in this visual pathway. This recurrent antitopographic inhibition is fundamentally different from surround inhibition in that it projects on all locations of its input layer, except to the locus from which it receives input. At a larger scale, the model shows how a focal top-down input from a forebrain region, the arcopallial gaze field, biases the competitive stimulus selection via the combined activation of a local excitation and the recurrent antitopographic inhibition. Our findings reveal circuit mechanisms of competitive stimulus selection and should motivate a search for anatomical implementations of these mechanisms in a range of vertebrate attentional systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The striatum, the major input nucleus of the basal ganglia, is numerically dominated by a single class of principal neurons, the GABAergic spiny projection neuron (SPN) that has been extensively studied both in vitro and in vivo. Much less is known about the sparsely distributed interneurons, principally the cholinergic interneuron (CIN) and the GABAergic fast-spiking interneuron (FSI). Here, we summarize results from two recent studies on these interneurons where we used in vivo intracellular recording techniques in urethane-anaesthetized rats (Schulz et al., J Neurosci 31[31], 2011; J Physiol, in press). Interneurons were identified by their characteristic responses to intracellular current steps and spike waveforms. Spontaneous spiking contained a high proportion (~45%) of short inter-spike intervals (ISI) of <30 ms in FSIs, but virtually none in CINs. Spiking patterns in CINs covered a broad spectrum ranging from regular tonic spiking to phasic activity despite very similar unimodal membrane potential distributions across neurons. In general, phasic spiking activity occurred in phase with the slow ECoG waves, whereas CINs exhibiting tonic regular spiking were little affected by afferent network activity. In contrast, FSIs exhibited transitions between Down and Up states very similar to SPNs. Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). Cortical-evoked inputs had faster dynamics in FSIs than SPNs and the membrane potential preceding spontaneous spike discharge exhibited short and steep trajectories, suggesting that fast input components controlled spike output in FSIs. Intrinsic resonance mechanisms may have further enhanced the sensitivity of FSIs to fast oscillatory inputs. Induction of an activated ECoG state by local ejection of bicuculline into the superior colliculus, resulted in increased spike frequency in both interneuron classes without changing the overall distribution of ISIs. This manipulation also made CINs responsive to a light flashed into the contralateral eye. Typically, the response consisted of an excitation at short latency followed by a pause in spike firing, via an underlying depolarization-hyperpolarization membrane sequence. These results highlight the differential sensitivity of striatal interneurons to afferent synaptic signals and support a model where CINs modulate the striatal network in response to salient sensory bottom-up signals, while FSIs serve gating of top-down signals from the cortex during action selection and reward-related learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of scientific-based conservation measures requires that sampling methodologies in studies modelling similar ecological aspects produce comparable results making easier their interpretation. We aimed to show how the choice of different methodological and ecological approaches can affect conclusions in nest-site selection studies along different Palearctic meta-populations of an indicator species. First, a multivariate analysis of the variables affecting nest-site selection in a breeding colony of cinereous vulture (Aegypius monachus) in central Spain was performed. Then, a meta-analysis was applied to establish how methodological and habitat-type factors determine differences and similarities in the results obtained by previous studies that have modelled the forest breeding habitat of the species. Our results revealed patterns in nesting-habitat modelling by the cinereous vulture throughout its whole range: steep and south-facing slopes, great cover of large trees and distance to human activities were generally selected. The ratio and situation of the studied plots (nests/random), the use of plots vs. polygons as sampling units and the number of years of data set determined the variability explained by the model. Moreover, a greater size of the breeding colony implied that ecological and geomorphological variables at landscape level were more influential. Additionally, human activities affected in greater proportion to colonies situated in Mediterranean forests. For the first time, a meta-analysis regarding the factors determining nest-site selection heterogeneity for a single species at broad scale was achieved. It is essential to homogenize and coordinate experimental design in modelling the selection of species' ecological requirements in order to avoid that differences in results among studies would be due to methodological heterogeneity. This would optimize best conservation and management practices for habitats and species in a global context.