56 resultados para Fracture Risk


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The economic burden associated with osteoporosis is considerable. As such, cost-effectiveness analyses are important contributors to the diagnostic and therapeutic decision-making process. The aim of this study was to review the cost effectiveness of treating post-menopausal osteoporosis with bisphosphonates and identify the key factors that influence the cost effectiveness of such treatment in the Swiss setting. A systematic search of databases (MEDLINE, EMBASE and the Cochrane Library) was conducted to identify published literature on the cost effectiveness of bisphosphonates in post-menopausal osteoporosis in the Swiss setting. Outcomes were compared with similar studies in Western European countries. Three cost-effectiveness studies of bisphosphonates in this patient population were identified; all were from a healthcare payer perspective. Outcomes showed that, relative to no treatment, treatment with oral bisphosphonates was predicted to be cost saving for most women aged ≥70 years with osteoporosis or at least one risk factor for fracture, and cost effective for women aged ≥75 years without prior fracture when used as a component of a population-based screen-and-treat programme. Results were most sensitive to changes in fracture risk, cost of fractures, cost of treatment, nursing home admissions and adherence with treatment. Swiss results were generally comparable to those in other European settings. Assuming similar clinical efficacy, lowering treatment cost (through the use of price-reduced brand-name or generic drugs) and/or improving adherence should both contribute to further improving the cost effectiveness of bisphosphonates in women with post-menopausal osteoporosis. Published evidence indicates that bisphosphonates are estimated to be similarly cost effective or cost saving in most treatment scenarios of post-menopausal osteoporosis in Switzerland and in neighbouring European countries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Areal bone mineral density (aBMD) at the distal tibia, measured at the epiphysis (T-EPI) and diaphysis (T-DIA), is predictive for fracture risk. Structural bone parameters evaluated at the distal tibia by high resolution peripheral quantitative computed tomography (HR-pQCT) displayed differences between healthy and fracture patients. With its simple geometry, T-DIA may allow investigating the correlation between bone structural parameter and bone strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Denosumab is an approved therapy for postmenopausal women with osteoporosis at high or increased risk for fracture. In the FREEDOM study, denosumab reduced fracture risk and increased bone mineral density (BMD). We report the spine and hip dual-energy X-ray absorptiometry (DXA) BMD responses from the overall study of 7808 women and from a substudy of 441 participants in which more extensive spine and hip assessments as well as additional skeletal sites were evaluated. Significant BMD improvements were observed as early as 1mo at the lumbar spine, total hip, and trochanter (all p<0.005 vs placebo and baseline). BMD increased progressively at the lumbar spine, total hip, femoral neck, trochanter, 1/3 radius, and total body from baseline to months 12, 24, and 36 (all p<0.005 vs placebo and baseline). BMD gains above the least significant change of more than 3% at 36 months were observed in 90% of denosumab-treated subjects at the lumbar spine and 74% at the total hip, and gains more than 6% occurred in 77% and 38%, respectively. In conclusion, denosumab treatment resulted in significant, early, and continued BMD increases at both trabecular and cortical sites throughout the skeleton over 36mo with important gains observed in most subjects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The WHO fracture risk assessment tool FRAX® is a computer based algorithm that provides models for the assessment of fracture probability in men and women. The approach uses easily obtained clinical risk factors (CRFs) to estimate 10-year probability of a major osteoporotic fracture (hip, clinical spine, humerus or wrist fracture) and the 10-year probability of a hip fracture. The estimate can be used alone or with femoral neck bone mineral density (BMD) to enhance fracture risk prediction. FRAX® is the only risk engine which takes into account the hazard of death as well as that of fracture. Probability of fracture is calculated in men and women from age, body mass index, and dichotomized variables that comprise a prior fragility fracture, parental history of hip fracture, current tobacco smoking, ever long-term use of oral glucocorticoids, rheumatoid arthritis, other causes of secondary osteoporosis, daily alcohol consumption of 3 or more units daily. The relationship between risk factors and fracture probability was constructed using information of nine population-based cohorts from around the world. CRFs for fracture had been identified that provided independent information on fracture risk based on a series of meta-analyses. The FRAX® algorithm was validated in 11 independent cohorts with in excess of 1 million patient-years, including the Swiss SEMOF cohort. Since fracture risk varies markedly in different regions of the world, FRAX® models need to be calibrated to those countries where the epidemiology of fracture and death is known. Models are currently available for 31 countries across the world. The Swiss-specific FRAX® model was developed very soon after the first release of FRAX® in 2008 and was published in 2009, using Swiss epidemiological data, integrating fracture risk and death hazard of our country. Two FRAX®-based approaches may be used to explore intervention thresholds. They have recently been investigated in the Swiss setting. In the first approach the guideline that individuals with a fracture probability equal to or exceeding that of women with a prior fragility fracture should be considered for treatment is translated into thresholds using 10-year fracture probabilities. In that case the threshold is age-dependent and increases from 16 % at the age of 60 ys to 40 % at the age of 80 ys. The second approach is a cost-effectiveness approach. Using a FRAX®-based intervention threshold of 15 % for both, women and men 50 years and older, should permit cost-effective access to therapy to patients at high fracture probability in our country and thereby contribute to further reduce the growing burden of osteoporotic fractures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

FRAX-based cost-effective intervention thresholds in the Swiss setting were determined. Assuming a willingness to pay at 2× Gross Domestic Product per capita, an intervention aimed at reducing fracture risk in women and men with a 10-year probability for a major osteoporotic fracture at or above 15% is cost-effective.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to investigate if radial extracorporeal shock wave therapy (rESWT) induces new bone formation and to study the time course of ESWT-induced osteogenesis. A total of 4000 impulses of radial shock waves (0.16 mJ/mm²) were applied to one hind leg of 13 New Zealand white rabbits with the contralateral side used for control. Treatment was repeated after 7 days. Fluorochrome sequence labeling of new bone formation was performed by subcutaneous injection of tetracycline, calcein green, alizarin red and calcein blue. Animals were sacrificed 2 weeks (n = 4), 4 weeks (n = 4) and 6 weeks (n = 5) after the first rESWT and bone sections were analyzed by fluorescence microscopy. Deposits of fluorochromes were classified and analyzed for significance with the Fisher exact test. rESWT significantly increased new bone formation at all time points over the 6-week study period. Intensity of ossification reached a peak after 4 weeks and declined at the end of the study. New bone formation was significantly higher and persisted longer at the ventral cortex, which was located in the direction to the shock wave device, compared with the dorsal cortex, emphasizing the dose-dependent process of ESWT-induced osteogenesis. No traumata, such as hemorrhage, periosteal detachment or microfractures, were observed by histologic and radiologic assessment. This is the first study demonstrating low-energy radial shock waves to induce new bone formation in vivo. Based on our results, repetition of ESWT in 6-week intervals can be recommended. Application to bone regions at increased fracture risk (e.g., in osteoporosis) are possible clinical indications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background. Falls and fractures in the elderly are among the leading causes of disability. We investigated whether pacemaker implantation prevents falls in patients with SND in a large cohort of patients. Methods. Patient demographics and medical history were collected prospectively. Fall history was retrospectively reconstituted from available medical records. The 10-year probability for major osteoporotic fractures was calculated retrospectively from available medical records using the Swiss fracture risk assessment tool FRAX-Switzerland. Results. During a mean observation period of 2.3 years after implantation, the rates of fallers and injured fallers with fracture were reduced to 15% and 6%, respectively. This corresponds to a relative reduction in the number of fallers of 75% (P < 0.001) and of injured fallers of 63% (P = 0.014) after pacemaker implantation. Similarly, the number of falls was reduced from 60 (48%) before pacemaker implantation to 22 (18%) thereafter (relative reduction 63%, P = 0.035) and the number of falls with injury from 22 (18%) to 7 (6%), which corresponds to a relative reduction of 67%, P = 0.013. Conclusion. In patients with SND, pacemaker implantation significantly reduces the number of patients experiencing falls, the total number of falls, and the risk for osteoporotic fractures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Osteoporosis is characterised by a progressive loss of bone mass and microarchitecture which leads to increased fracture risk. Some of the drugs available to date have shown reductions in vertebral and non-vertebral fracture risk. However, in the ageing population of industrialised countries, still more fractures happen today than are avoided, which highlights the large medical need for new treatment options, models, and strategies. Recent insights into bone biology, have led to a better understanding of bone cell functions and crosstalk between osteoblasts, osteoclasts, and osteocytes at the molecular level. In the future, the armamentarium against osteoporotic fractures will likely be enriched by (1.) new bone anabolic substances such as antibodies directed against the endogenous inhibitors of bone formation sclerostin and dickkopf-1, PTH and PTHrp analogues, and possibly calcilytics; (2.) new inhibitors of bone resorption such as cathepsin K inhibitors which may suppress osteoclast function without impairing osteoclast viability and thus maintain bone formation by preserving the osteoclast-osteoblast crosstalk, and denosumab, an already widely available antibody against RANKL which inhibits osteoclast formation, function, and survival; and (3.) new therapeutic strategies based on an extended understanding of the pathophysiology of osteoporosis which may include sequential therapies with two or more bone active substances aimed at optimising the management of bone capital acquired during adolescence and maintained during adulthood in terms of both quantity and quality. Finally, one of the future challenges will be to identify those patients and patient populations expected to benefit the most from a given drug therapy or regimen. The WHO fracture risk assessment tool FRAX® and improved access to bone mineral density measurements by DXA will play a key role in this regard.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucocorticosteroid-induced spinal osteoporosis (GIOP) is the most frequent of all secondary types of osteoporosis. The understanding of the pathophysiology of glucocorticoid (GC) induced bone loss is of crucial importance for appropriate treatment and prevention of debilitating fractures that occur predominantly in the spine. GIOP results from depressed bone formation due to lower activity and higher death rate of osteoblasts on the one hand, and from increase bone resorption due to prolonged lifespan of osteoclasts on the other. In addition, calcium/phosphate metabolism may be disturbed through GC effects on gut, kidney, parathyroid glands and gonads. Therefore, therapeutic agents aim at restoring balanced bone cell activity by directly decreasing apoptosis rate of osteoblasts (e.g., cyclical parathyroid hormone) or by increasing apoptosis rate of osteoclasts (e.g., bisphosphonates). Other therapeutical efforts aim at maintaining/restoring calcium/phosphate homeostasis: improving intestinal calcium absorption (using calcium supplementation, vitamin D and derivates) and avoiding increased urinary calcium loss (using thiazides) prevent or counteract a secondary hyperparthyroidism. Bisphosphonates, particularly the aminobisphosphonates risedronate and alendronate, have been shown to protect patients on GCs from (further) bone loss to reduce vertebral fracture risk. Calcitonin may be of interest in situation where bisphosphonates are contraindicated or not applicable and in cases where acute pain due to vertebral fracture has to be manage. The intermittent administration of 1-34-parathormone may be an appealing treatment alternative, based on its documented anabolic effects on bone resulting from the reduction of osteoblastic apoptosis. Calcium and vitamin D should be a systematic adjunctive measure to any drug treatment for GIOP. Based on currently available evidence, fluoride, androgens, estrogens (opposed or unopposed) cannot be recommended for the prevention and treatment of GIOP. However, substitution of gonadal hormones may be indicated if GC-induced hypogonadism is present and leads to clinical symptoms. Data using the SERM raloxifene to treat or prevent GIOP are lacking, as are data using the promising bone anabolic agent strontium ranelate. Kyphoplasty performed in appropriately selected osteoporotic patients with painful vertebral fractures is a promising addition to current medical treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Many osteoporosis patients have low 25-hydroxyvitamin D (25OHD) and do not take recommended vitamin D amounts. A single tablet containing both cholecalciferol (vitamin D3) and alendronate would improve vitamin D status concurrently, with a drug shown to reduce fracture risk. This study assessed the efficacy, safety, and tolerability of a once-weekly tablet containing alendronate 70 mg and cholecalciferol 70 microg (2800 IU) (ALN + D) versus alendronate 70 mg alone (ALN). METHODS: This 15-week, randomized, double-blind, multi-center, active-controlled study was conducted during a season when 25OHD levels are declining, and patients were required to avoid sunlight and vitamin D supplements for the duration of the study. Men (n = 35) and postmenopausal women (n = 682) with osteoporosis and 25OHD >or= 9 ng/mL were randomized to ALN + D (n = 360) or ALN (n = 357). MAIN OUTCOME MEASURES: Serum 25OHD, parathyroid hormone, bone-specific alkaline phosphatase (BSAP), and urinary N-telopeptide collagen cross-links (NTX). RESULTS: Serum 25OHD declined from 22.2 to 18.6 ng/mL with ALN (adjusted mean change = -3.4; 95% confidence interval [CI]: -4.0 to -2.8), and increased from 22.1 to 23.1 ng/mL with ALN + D (adjusted mean change = 1.2; 95% CI: 0.6 to 1.8). At 15 weeks, adjusted mean 25OHD was 26% higher (p < 0.001, ALN + D versus ALN), the adjusted relative risk (RR) of 25OHD < 15 ng/mL (primary endpoint) was reduced by 64% (incidence 11% vs. 32%; RR = 0.36; 95% CI: 0.27 to 0.48 [p < 0.001]), and the RR of 25OHD < 9 ng/mL (a secondary endpoint) was reduced by 91% (1% vs. 13%; RR = 0.09; 95% CI: 0.03 to 0.23 [p < 0.001]). Antiresorptive efficacy was unaltered, as measured by reduction in bone turnover (BSAP and NTX). CONCLUSION: In osteoporosis patients who avoided sunlight and vitamin D supplements, this once-weekly tablet containing alendronate and cholecalciferol provided equivalent antiresorptive efficacy, reduced the risk of low serum 25OHD, improved vitamin D status over 15 weeks, and was not associated with hypercalcemia, hypercalciuria or other adverse findings, versus alendronate alone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increased fracture risk has been reported for the adjacent vertebral bodies after vertebroplasty. This increase has been partly attributed to the high Young's modulus of commonly used polymethylmethacrylate (PMMA). Therefore, a compliant bone cement of PMMA with a bulk modulus closer to the apparent modulus of cancellous bone has been produced. This compliant bone cement was achieved by introducing pores in the cement. Due to the reduced failure strength of that porous PMMA cement, cancellous bone augmented with such cement could deteriorate under dynamic loading. The aim of the present study was to assess the potential of acute failure, particle generation and mechanical properties of cancellous bone augmented with this compliant cement in comparison to regular cement. For this purpose, vertebral biopsies were augmented with porous- and regular PMMA bone cement, submitted to dynamic tests and compression to failure. Changes in Young's modulus and height due to dynamic loading were determined. Afterwards, yield strength and Young's modulus were determined by compressive tests to failure and compared to the individual composite materials. No failure occurred and no particle generation could be observed during dynamical testing for both groups. Height loss was significantly higher for the porous cement composite (0.53+/-0.21%) in comparison to the biopsies augmented with regular cement (0.16+/-0.1%). Young's modulus of biopsies augmented with porous PMMA was comparable to cancellous bone or porous cement alone (200-700 MPa). The yield strength of those biopsies (21.1+/-4.1 MPa) was around two times higher than for porous cement alone (11.6+/-3.3 MPa).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spinal cord injury (SCI) leads to severe bone loss in the paralysed limbs and to a resulting increased fracture risk thereof. Since long bone fractures can lead to comorbidities and a reduction in quality of life, it is important to improve bone strength in people with chronic SCI. In this prospective longitudinal cohort study, we investigated whether functional electrical stimulation (FES) induced high-volume cycle training can partially reverse the loss of bone substance in the legs after chronic complete SCI. Eleven participants with motor-sensory complete SCI (mean age 41.9+/-7.5 years; 11.0+/-7.1 years post injury) were recruited. After an initial phase of 14+/-7 weeks of FES muscle conditioning, participants performed on average 3.7+/-0.6 FES-cycling sessions per week, of 58+/-5 min each, over 12 months at each individual's highest power output. Bone and muscle parameters were investigated in the legs by means of peripheral quantitative computed tomography before the muscle conditioning (t1), and after six (t2) and 12 months (t3) of high-volume FES-cycle training. After 12 months of FES-cycling, trabecular and total bone mineral density (BMD) as well as total cross-sectional area in the distal femoral epiphysis increased significantly by 14.4+/-21.1%, 7.0+/-10.8% and 1.2+/-1.5%, respectively. Bone parameters in the femoral shaft showed small but significant decreases, with a reduction of 0.4+/-0.4% in cortical BMD, 1.8+/-3.0% in bone mineral content, and 1.5+/-2.1% in cortical thickness. These decreases mainly occurred between t1 and t2. No significant changes were found in any of the measured bone parameters in the tibia. Muscle CSA at the thigh increased significantly by 35.5+/-18.3%, while fat CSA at the shank decreased by 16.7+/-12.3%. Our results indicate that high-volume FES-cycle training leads to site-specific skeletal changes in the paralysed limbs, with an increase in bone parameters at the actively loaded distal femur but not the passively loaded tibia. Thus, we conclude that high-volume FES-induced cycle training has clinical relevance as it can partially reverse bone loss and thus may reduce fracture risk at this fracture prone site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intravenous bisphosphonates reduce fracture risk but have been associated in rare cases with deteriorating renal-function in cancer patients. The renal effects of zoledronic acid were assessed in osteoporotic postmenopausal women from 27 countries who received three annual infusions of zoledronic acid or a placebo in a randomized, double-blind trial. Serum creatinine, estimated creatinine clearance and urinary protein were measured before and after at least one infusion in a predefined renal safety cohort of 5035 equally divided patients. This group was compared to 7714 patients whose parameters were measured annually. Significantly more transient pre- to post-infusion increases in serum creatinine occurred in zoledronic acid than placebo-treated patients with significant elevations, relative to pre-infusion, only in the second year. All 31 zoledronic acid and 8 of 10 patients on placebo recovered their pre-infusion serum creatinine value within 12 months. No differences in mean changes in serum creatinine, estimated creatinine clearance or adverse renal events were found. We found that transient changes in renal function can occur following an annual zoledronic acid infusion but, in the long term, renal function was not different from control patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fractures occurring after 50 years of age are among the leading causes of hospitalizations in Switzerland. At the age of 50 years, in Switzerland, the remaining lifetime probability of suffering an osteoporotic fracture is 51% and 20% for women and men, respectively, i.e. every other woman and every fifth man. According to the demographic projection scenarios, the number of elderly aged 65 years or more will have doubled by year 2050. In the absence of targeted interventions, the considerable human, social, and economic burden represented by osteoporotic fractures should increase by the same order of magnitude. With FRAX (fracture risk assessment tool), validated for Switzerland in tight collaboration with the World Heath Organization, the individual probability of fracture during the next 10 years can be predicted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dual energy X-ray absorptiometry (DXA) is widely accepted as the reference method for diagnosis and monitoring of osteoporosis and for assessment of fracture risk, especially at hip. However, axial-DXA is not suitable for mass screening, because it is usually confined to specialized centers. We propose a two-step diagnostic approach to postmenopausal osteoporosis: the first step, using an inexpensive, widely available screening technique, aims at risk stratification in postmenopausal women; the second step, DXA of spine and hip is applied only to potentially osteoporotic women preselected on the basis of the screening measurement. In a group of 110 healthy postmenopausal woman, the capability of various peripheral bone measurement techniques to predict osteoporosis at spine and/or hip (T-score < -2.5SD using DXA) was tested using receiver operating characteristic (ROC) curves: radiographic absorptiometry of phalanges (RA), ultrasonometry at calcaneus (QUS. CALC), tibia (SOS.TIB), and phalanges (SOS.PHAL). Thirty-three women had osteoporosis at spine and/or hip with DXA. Areas under the ROC curves were 0.84 for RA, 0.83 for QUS.CALC, 0.77 for SOS.PHAL (p < 0.04 vs RA) and 0.74 for SOS.TIB (p < 0.02 vs RA and p = 0.05 vs QUS.CALC). For levels of sensitivity of 90%, the respective specificities were 67% (RA), 64% (QUS.CALC), 48% (SOS.PHAL), and 39% (SOS.TIB). In a cost-effective two-step, the price of the first step should not exceed 54% (RA), 51% (QUS.CALC), 42% (SOS.PHAL), and 25% (SOS.TIB). In conclusion, RA, QUS.CALC, SOS.PHAL, and SOS.TIB may be useful to preselect postmenopausal women in whom axial DXA is indicated to confirm/exclude osteoporosis at spine or hip.