38 resultados para Forms of address.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Procyclic forms of Trypanosoma brucei reside in the midgut of tsetse flies where they are covered by several million copies of glycosylphosphatidylinositol-anchored proteins known as procyclins. It has been proposed that procyclins protect parasites against proteases and/or participate in tropism, directing them from the midgut to the salivary glands. There are four different procyclin genes, each subject to elaborate levels of regulation. To determine if procyclins are essential for survival and transmission of T. brucei, all four genes were deleted and parasite fitness was compared in vitro and in vivo. When co-cultured in vitro, the null mutant and wild type trypanosomes (tagged with cyan fluorescent protein) maintained a near-constant equilibrium. In contrast, when flies were infected with the same mixture, the null mutant was rapidly overgrown in the midgut, reflecting a reduction in fitness in vivo. Although the null mutant is patently defective in competition with procyclin-positive parasites, on its own it can complete the life cycle and generate infectious metacyclic forms. The procyclic form of T. brucei thus differs strikingly from the bloodstream form, which does not tolerate any perturbation of its variant surface glycoprotein coat, and from other parasites such as Plasmodium berghei, which requires the circumsporozoite protein for successful transmission to a new host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The procyclic form of Trypanosoma brucei colonises the gut of its insect vector, the tsetse fly. GPEET and EP procyclins constitute the parasite's surface coat at this stage of the life cycle, and the presence or absence of GPEET distinguishes between early and late procyclic forms, respectively. Differentiation from early to late procyclic forms in vivo occurs in the fly midgut and can be mimicked in culture. Our analysis of this transition in vitro delivered new insights into the process of GPEET repression. First, we could show that parasites followed a concrete sequence of events upon triggering differentiation: after undergoing an initial growth arrest, cells lost GPEET protein, and finally late procyclic forms resumed proliferation. Second, we determined the stability of both GPEET and EP mRNA during differentiation. GPEET mRNA is exceptionally stable in early procyclic forms, with a half-life >6h. The GPEET mRNA detected in late procyclic form cultures is a mixture of transcripts from both bona fide late procyclic forms and GPEET-positive 'laggard' parasites present in these cultures. However, its stability was clearly reduced during differentiation and in late procyclic form cultures. Alternatively processed GPEET transcripts were enriched in samples from late procyclic forms, suggesting that altered mRNA processing might contribute to repression of GPEET in this developmental stage. In addition, we detected GPEET transcripts with non-templated oligo(U) tails that were enriched in late procyclic forms. To the best of our knowledge, this is the first study reporting a uridylyl-tailed, nuclear-encoded mRNA species in trypanosomatids or any other protozoa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Brain-derived neurotrophic factor (BDNF) blocks activation of caspase-3, reduces translocation of apoptosis-inducing factor (AIF), attenuates excitotoxicity of glutamate, and increases antioxidant enzyme activities. The mechanisms of neuroprotection suggest that BDNF may be beneficial in bacterial meningitis. METHODS To assess a potentially beneficial effect of adjuvant treatment with BDNF in bacterial meningitis, 11-day-old infant rats with experimental meningitis due to Streptococcus pneumoniae or group B streptococci (GBS) were randomly assigned to receive intracisternal injections with either BDNF (3 mg/kg) or equal volumes (10 mu L) of saline. Twenty-two hours after infection, brains were analyzed, by histomorphometrical examination, for the extent of cortical and hippocampal neuronal injury. RESULTS Compared with treatment with saline, treatment with BDNF significantly reduced the extent of 3 distinct forms of brain cell injury in this disease model: cortical necrosis in meningitis due to GBS (median, 0.0% [range, 0.0%-33.7%] vs. 21.3% [range, 0.0%-55.3%]; P<.03), caspase-3-dependent cell death in meningitis due to S. pneumoniae (median score, 0.33 [range, 0.0-1.0] vs. 1.10 [0.10-1.56]; P<.05), and caspase-3-independent hippocampal cell death in meningitis due to GBS (median score, 0 [range, 0-2] vs. 0.88 [range, 0-3.25]; P<.02). The last form of injury was associated with nuclear translocation of AIF. CONCLUSION BDNF efficiently reduces multiple forms of neuronal injury in bacterial meningitis and may hold promise as adjunctive therapy for this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial meningitis causes neurological sequelae in up to 50% of survivors. Two pathogens known for their propensity to cause severe neurological damage are Streptococcus pneumoniae and group B streptococci. Some forms of neuronal sequelae, such as learning and memory deficits, have been associated with neuronal injury in the hippocampus. To learn more about hippocampal injury in meningitis, we performed a comparative study in bacterial meningitis due to S. pneumoniae and group B streptococcus, in which 11-day-old infant rats were infected intracisternally with either of the two pathogens. Histopathological examination of the neuronal injury in the dentate gyrus of the hippocampus showed that S. pneumoniae caused predominantly classical apoptotic cell death. Cells undergoing apoptosis were located only in the subgranular zone and stained positive for activated caspase-3 and TUNEL. Furthermore, dividing progenitor cells seemed particularly sensitive to this form of cell death. Group B streptococcus was mainly responsible for a caspase-3-independent (and TUNEL-negative) form of cell death. Compared with the morphological features found in apoptosis (e.g., apoptotic bodies), this form of neuronal death was characterized by clusters of uniformly shrunken cells. It affected the dentate gyrus throughout the blade, showing no preferences for immature or mature neurons. Thus, depending on the infecting agent, bacterial meningitis causes two distinct forms of cell injury in the dentate gyrus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FcαRI (CD89), the human Fc receptor for IgA, is highly expressed on neutrophil granulocytes. In this study, we show that FcαRI induces different forms of neutrophil death, depending on the inflammatory microenvironment. The susceptibility of inflammatory neutrophils from sepsis or rheumatoid arthritis toward death induced by specific mAb, or soluble IgA at high concentrations, was enhanced. Although unstimulated cells experienced apoptosis following anti-FcαRI mAb stimulation, preactivation with cytokines or TLR agonists in vitro enhanced FcαRI-mediated death by additional recruitment of caspase-independent pathways, but this required PI3K class IA and MAPK signaling. Transmission electron microscopy of FcαRI-stimulated cells revealed cytoplasmic changes with vacuolization and mitochondrial swelling, nuclear condensation, and sustained plasma membrane. Coculture experiments with macrophages revealed anti-inflammatory effects of the partially caspase-independent death of primed cells following FcαRI engagement. Our data suggest that FcαRI has the ability to regulate neutrophil viability and to induce different forms of neutrophils depending on the inflammatory microenvironment and specific characteristics of the ligand-receptor interactions. Furthermore, these findings have potential implications for FcαRI-targeted strategies to treat neutrophil-associated inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of function of the urea cycle enzyme argininosuccinate lyase (ASL) is caused by mutations in the ASL gene leading to ASL deficiency (ASLD). ASLD has a broad clinical spectrum ranging from life-threatening severe neonatal to asymptomatic forms. Different levels of residual ASL activity probably contribute to the phenotypic variability but reliable expression systems allowing clinically useful conclusions are not yet available. In order to define the molecular characteristics underlying the phenotypic variability, we investigated all ASL mutations that were hitherto identified in patients with late onset or mild clinical and biochemical courses by ASL expression in human embryonic kidney 293 T cells. We found residual activities >3 % of ASL wild type (WT) in nine of 11 ASL mutations. Six ASL mutations (p.Arg95Cys, p.Ile100Thr, p.Val178Met, p.Glu189Gly, p.Val335Leu, and p.Arg379Cys) with residual activities ≥16 % of ASL WT showed no significant or less than twofold reduced Km values, but displayed thermal instability. Computational structural analysis supported the biochemical findings by revealing multiple effects including protein instability, disruption of ionic interactions and hydrogen bonds between residues in the monomeric form of the protein, and disruption of contacts between adjacent monomeric units in the ASL tetramer. These findings suggest that the clinical and biochemical course in variant forms of ASLD is associated with relevant residual levels of ASL activity as well as instability of mutant ASL proteins. Since about 30 % of known ASLD genotypes are affected by mutations studied here, ASLD should be considered as a candidate for chaperone treatment to improve mutant protein stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To compare the in vitro effects of hypertonic solutions and colloids to saline on coagulation in dogs. DESIGN In vitro experimental study. SETTING Veterinary teaching hospital. ANIMALS Twenty-one adult dogs. INTERVENTIONS Blood samples were diluted with saline, 7.2% hypertonic saline solution with 6% hydroxyethylstarch with an average molecular weight of 200 kDa and a molar substitution of 0.4 (HH), 7.2% hypertonic saline (HTS), hydroxyethyl starch (HES) 130/0.4 or hydroxyethyl starch 600/0.75 at ratios of 1:22 and 1:9, and with saline and HES at a ratio of 1:3. MEASUREMENTS AND MAIN RESULTS Whole blood coagulation was analyzed using rotational thromboelastometry (extrinsic thromboelastometry-cloting time (ExTEM-CT), maximal clot firmness (MCF) and clot formation time (CFT) and fibrinogen function TEM-CT (FibTEM-CT) and MCF) and platelet function was analyzed using a platelet function analyzer (closure time, CTPFA ). All parameters measured were impaired by saline dilution. The CTPFA was prolonged by 7.2% hypertonic saline solution with 6% hydroxyethylstarch with an average molecular weight of 200 kDa and a molar substitution of 0.4 (HH) and HTS but not by HES solutions. At clinical dilutions equivalent to those generally administered for shock (saline 1:3, HES 1:9, and hypertonic solutions 1:22), CTPFA was more prolonged by HH and HTS than other solutions but more by saline than HES. No difference was found between the HES solutions or the hypertonic solutions. ExTEM-CFT and MCF were impaired by HH and HTS but only mildly by HES solutions. At clinically relevant dilutions, no difference was found in ExTEM-CFT between HTS and saline or in ExTEM-MCF between HH and saline. No consistent difference was found between the 2 HES solutions but HH impaired ExTEM-CFT and MCF more than HTS. At high dilutions, FibTEM-CT and -MCF and ExTEM-CT were impaired by HES. CONCLUSIONS Hypertonic solutions affect platelet function and whole blood coagulation to a greater extent than saline and HES. At clinically relevant dilutions, only CTPFA was markedly more affected by hypertonic solutions than by saline. At high dilutions, HES significantly affects coagulation but to no greater extent than saline at clinically relevant dilutions.