89 resultados para Formation in Context
Resumo:
The aim of this study was to investigate if radial extracorporeal shock wave therapy (rESWT) induces new bone formation and to study the time course of ESWT-induced osteogenesis. A total of 4000 impulses of radial shock waves (0.16 mJ/mm²) were applied to one hind leg of 13 New Zealand white rabbits with the contralateral side used for control. Treatment was repeated after 7 days. Fluorochrome sequence labeling of new bone formation was performed by subcutaneous injection of tetracycline, calcein green, alizarin red and calcein blue. Animals were sacrificed 2 weeks (n = 4), 4 weeks (n = 4) and 6 weeks (n = 5) after the first rESWT and bone sections were analyzed by fluorescence microscopy. Deposits of fluorochromes were classified and analyzed for significance with the Fisher exact test. rESWT significantly increased new bone formation at all time points over the 6-week study period. Intensity of ossification reached a peak after 4 weeks and declined at the end of the study. New bone formation was significantly higher and persisted longer at the ventral cortex, which was located in the direction to the shock wave device, compared with the dorsal cortex, emphasizing the dose-dependent process of ESWT-induced osteogenesis. No traumata, such as hemorrhage, periosteal detachment or microfractures, were observed by histologic and radiologic assessment. This is the first study demonstrating low-energy radial shock waves to induce new bone formation in vivo. Based on our results, repetition of ESWT in 6-week intervals can be recommended. Application to bone regions at increased fracture risk (e.g., in osteoporosis) are possible clinical indications.
Resumo:
ω3-polyunsaturated fatty acids (ω3-PUFAs) are known to exert anti-inflammatory effects in various disease models although their direct targets are only poorly characterized.
Resumo:
Cardiolipin is important for bacterial and mitochondrial stability and function. The final step in cardiolipin biosynthesis is catalyzed by cardiolipin synthase and differs mechanistically between prokaryotes and eukaryotes. To study the importance of cardiolipin synthesis for mitochondrial integrity, membrane protein complex formation, and cell proliferation in the human and animal pathogenic protozoan parasite, Trypanosoma brucei, we generated conditional cardiolipin synthase-knockout parasites. We found that cardiolipin formation in T. brucei procyclic forms is catalyzed by a bacterial-type cardiolipin synthase, providing experimental evidence for a prokaryotic-type cardiolipin synthase in a eukaryotic organism. Ablation of enzyme expression resulted in inhibition of de novo cardiolipin synthesis, reduction in cellular cardiolipin levels, alterations in mitochondrial morphology and function, and parasite death in culture. By using immunofluorescence microscopy and blue-native gel electrophoresis, cardiolipin synthase was shown to colocalize with inner mitochondrial membrane proteins and to be part of a large protein complex. During depletion of cardiolipin synthase, the levels of cytochrome oxidase subunit IV and cytochrome c1, reflecting mitochondrial respiratory complexes IV and III, respectively, decreased progressively.
Resumo:
The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40 % of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for this seems to be an unbalanced colonization of the scaffolds with cells, due to insufficient pore size.
Resumo:
The clinical use of the alkylating oxazaphosphorine ifosfamide is hampered by a potentially severe encephalopathy. S-carboxymethylcysteine (SCMC), a metabolite of ifosfamide (IF), activates the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor, causes neuronal acidification, and could thus be responsible for the encephalopathy. Since the presence of SCMC in brain has not been documented following administration of IF, SCMC was measured in the brain of mice following both the individual i.p. administration of IF and SCMC. SCMC was found in a concentration of 108.2 +/- 29.7 nmol/g following IF, but was detectable at much lower levels following the administration of SCMC (21.1 +/- 21.2 nmol/g). Together with the observation that the concentration of SCMC was 10-fold higher in liver than in brain 1h after administration of SCMC, these findings suggest that the SCMC found after IF was formed in the brain in situ. The concentration of glutamic acid was similar in IF and SCMC treated animals. Methylene blue, which is used clinically to treat and to prevent IF encephalopathy, did not decrease the formation of SCMC in brain. By inhibiting monoamine oxidase activity it did, however, markedly increase the concentration of serotonin in brain which could modulate the effects of SCMC on AMPA/kainate receptors. Thus, SCMC is present in brain following the administration of IF and could contribute to the IF-associated encephalopathy by activation of AMPA/kainate receptors.
Resumo:
TNFalpha is known to stimulate the development and activity of osteoclasts and of bone resorption. The cytokine was found to mediate bone loss in conjunction with inflammatory diseases such as rheumatoid arthritis or chronic aseptic inflammation induced by wear particles from implants and was suggested to be a prerequisite for the loss of bone mass under estrogen deficiency. In the present study, the regulation of osteoclastogenesis by TNFalpha was investigated in co-cultures of osteoblasts and bone marrow or spleen cells and in cultures of bone marrow and spleen cells grown with CSF-1 and RANKL. Low concentrations of TNFalpha (1 ng/ml) caused a >90% decrease in the number of osteoclasts in co-cultures, but did not affect the development of osteoclasts from bone marrow cells. In cultures with p55TNFR(-/-) osteoblasts and wt BMC, the inhibitory effect was abrogated and TNFalpha induced an increase in the number of osteoclasts in a dose-dependent manner. Osteoblasts were found to release the inhibitory factor(s) into the culture supernatant after simultaneous treatment with 1,25(OH)(2)D(3) and TNFalpha, this activity, but not its release, being resistant to treatment with anti-TNFalpha antibodies. Dexamethasone blocked the secretion of the TNFalpha-dependent inhibitor by osteoblasts, while stimulating the development of osteoclasts. The data suggest that the effects of TNFalpha on the differentiation of osteoclast lineage cells and on bone metabolism may be more complex than hitherto assumed and that these effects may play a role in vivo during therapies for inflammatory diseases.
Resumo:
Renal sodium retention in experimental liver cirrhosis originates from the distal nephron sensitive to aldosterone. The aims of this study were to (1) determine the exact site of sodium retention along the aldosterone-sensitive distal nephron, and (2) to evaluate the role of aldosterone and mineralocorticoid receptor activation in this process. Liver cirrhosis was induced by bile duct ligation in either adrenal-intact or corticosteroid-clamped mice. Corticosteroid-clamp was achieved through adrenalectomy and corticosteroid supplementation with aldosterone and dexamethasone via osmotic minipumps. 24-hours renal sodium balance was evaluated in metabolic cages. Activity and expression of sodium- and potassium-dependent adenosine triphosphatase were determined in microdissected segments of nephron. Within 4-5 weeks, cirrhosis induced sodium retention in adrenal-intact mice and formation of ascites in 50% of mice. At that time, sodium- and potassium-dependent adenosine triphosphatase activity increased specifically in cortical collecting ducts. Hyperaldosteronemia was indicated by increases in urinary aldosterone excretion and in sgk1 (serum- and glucocorticoid-regulated kinase 1) mRNA expression in collecting ducts. Corticosteroid-clamp prevented induction of sgk1 but not cirrhosis-induced sodium retention, formation of ascites and stimulation of sodium- and potassium-dependent adenosine triphosphatase activity and expression (mRNA and protein) in collecting duct. These findings demonstrate that sodium retention in cirrhosis is independent of hyperaldosteronemia and of the activation of mineralocorticoid receptor. CONCLUSION: Bile duct ligation in mice induces cirrhosis which, within 4-5 weeks, leads to the induction of sodium- and potassium-dependent adenosine triphosphatase in cortical collecting ducts, to renal sodium retention and to the formation of ascites. Sodium retention, ascites formation and induction of sodium- and potassium-dependent adenosine triphosphatase are independent of the activation of mineralocorticoid receptors by either aldosterone or glucocorticoids.
Resumo:
A major aim in lung transplantation is to prevent the loss of structural integrity due to ischemia and reperfusion (I/R) injury. Preservation solutions protect the lung against I/R injury to a variable extent. We compared the influence of two extracellular-type preservation solutions (Perfadex, or PX, and Celsior, or CE) on the morphological alterations induced by I/R. Pigs were randomly assigned to sham (n = 4), PX (n = 5), or CE (n = 2) group. After flush perfusion with PX or CE, donor lungs were excised and stored for 27 hr at 4 degrees C. The left donor lung was implanted into the recipient, reperfused for 6 hr, and, afterward, prepared for light and electron microscopy. Intra-alveolar, septal, and peribronchovascular edema as well as the integrity of the blood-air barrier were determined stereologically. Intra-alveolar edema was more pronounced in CE (219.80 +/- 207.55 ml) than in PX (31.46 +/- 15.75 ml). Peribronchovascular (sham: 13.20 +/- 4.99 ml; PX: 15.57 +/- 5.53 ml; CE: 31.56 +/- 5.78 ml) and septal edema (thickness of alveolar septal interstitium, sham: 98 +/- 33 nm; PX: 84 +/- 8 nm; CE: 249 +/- 85 nm) were only found in CE. The blood-air barrier was similarly well preserved in sham and PX but showed larger areas of swollen and fragmented epithelium or endothelium in CE. The present study shows that Perfadex effectively prevents intra-alveolar, septal, and peribronchovascular edema formation as well as injury of the blood-air barrier during I/R. Celsior was not effective in preserving the lung from morphological I/R injury.