26 resultados para Forced Expiratory Volume
Resumo:
BACKGROUND: Functional deterioration in cystic fibrosis (CF) may be reflected by increasing bronchial obstruction and, as recently shown, by ventilation inhomogeneities. This study investigated which physiological factors (airway obstruction, ventilation inhomogeneities, pulmonary hyperinflation, development of trapped gas) best express the decline in lung function, and what role specific CFTR genotypes and different types of bronchial infection may have upon this process. METHODS: Serial annual lung function tests, performed in 152 children (77 males; 75 females) with CF (age range: 6-18 y) provided data pertaining to functional residual capacity (FRCpleth, FRCMBNW), volume of trapped gas (VTG), effective specific airway resistance (sReff), lung clearance index (LCI), and forced expiratory indices (FVC, FEV1, FEF50). RESULTS: All lung function parameters showed progression with age. Pulmonary hyperinflation (FRCpleth > 2SDS) was already present in 39% of patients at age 6-8 yrs, increasing to 67% at age 18 yrs. The proportion of patients with VTG > 2SDS increased from 15% to 54% during this period. Children with severe pulmonary hyperinflation and trapped gas at age 6-8 yrs showed the most pronounced disease progression over time. Age related tracking of lung function parameters commences early in life, and is significantly influenced by specific CFTR genotypes. The group with chronic P. aeruginosa infection demonstrated most rapid progression in all lung function parameters, whilst those with chronic S. aureus infection had the slowest rate of progression. LCI, measured as an index of ventilation inhomogeneities was the most sensitive discriminator between the 3 types of infection examined (p < 0.0001). CONCLUSION: The relationships between lung function indices, CFTR genotypes and infective organisms observed in this study suggest that measurement of other lung function parameters, in addition to spirometry alone, may provide important information about disease progression in CF.
Resumo:
BACKGROUND: We observed a remarkable increase in the number of young patients who presented with lung emphysema and secondary spontaneous pneumothorax (SSP) at our institution for over a period of 30 months; most of them have a common history of marijuana abuse. STUDY DESIGN: Retrospective case series. METHODS: Seventeen young patients presented with spontaneous pneumothorax with bullous lung emphysema were systematically evaluated over a period of 30 months. All were regular marijuana smokers. Clinical history, chest X-ray, CT-scan, lung function test, and laboratory and histological examinations were assessed. We compared the findings of this group (group I) with the findings of non-marijuana smoking patients (group II) in the same period. The findings of this series were also compared with the findings of 75 patients presented with pneumothorax in a previous period from January 2000 till March 2002 (group III). RESULTS: In group I, there were 17 patients: the median age of the patients was 27 years (range 19-43 years), 16 males and 1 female. All were living in Switzerland. All but one smoked marijuana daily for a mean of 8.8 years and tobacco for 11.8 years. CT-scan showed multiple bullae at the apex or significant bullous emphysema with predominance in the upper lobes only in two patients. Only two patients had reduced forced first second expiratory volume (FEV1) and one reduced vital capacity (VC) below the predicted 50%. This correlated with the subjectively asymptomatic condition of the patients. All but two patients were treated by video-assisted thoracoscopic surgery (VATS) for prevention of relapsing pneumothorax. Histology showed severe lung emphysema, inflammation, and heavily pigmented macrophages. In group II, there were 85 patients: there were 78 males, the median age was 24 years (range 17-40 years), 74 patients smoked tobacco for 13.4 years but no marijuana. CT-scan in 72 patients showed only small bullae at the apex but no significant emphysema; other clinical, laboratory, and histopathological findings showed no significant difference in group I. In group III, there were 75 patients: there were 71 males and 4 females. Mean age was 25 years (range 16-46 years). Six smoked marijuana daily for a mean of 3.2 years, and 62 smoked tobacco for 14 years. CT-scan done in 59 patients showed few small bullae at the apex but no significant lung emphysema. The presence of lung emphysema on CT-scan in group I was significantly different than in groups II and III (p=0.14). No significant difference was found among all groups in the form of clinical, laboratory, and histopathological findings. CONCLUSIONS: In case of emphysema in young individuals, marijuana abuse has to be considered in the differential diagnosis. The period of marijuana smoking seems to play an important role in the development of lung emphysema. This obviously quite frequent condition in young and so far asymptomatic patients will have medical, financial, and ethical impact, as some of these patients may be severely handicapped or even become lung transplant candidates in the future.
Resumo:
Implantation of stents into the bronchial walls is a newly developed method to treat lung emphysema, which is now being tested clinically. During this procedure, a bronchoscope carrying a Doppler ultrasonography head is placed into a segmental bronchus and the blood vessels running in parallel to the bronchus are localized. Once a safe location without blood vessels is found, the bronchial wall is perforated and a stent is placed within the wall to improve the expiratory volume of these "bypasses" to the adjacent lung parenchyma. We observed a fatal complication with this method in a 60-year-old man. The bronchial wall and the pulmonary artery were perforated by one of the stents inducing massive bleeding, which could not be stopped. The patient died due to aspiration of blood in combination with massive loss of blood. The general risk to perforate the pulmonary artery during this procedure cannot be estimated from this single observation but should be considered regarding the legal and clinical aspects.
Resumo:
Background and Aim In patients with cystic fibrosis (CF) the architecture of the developing lungs and the ventilation of lung units are progressively affected, influencing intrapulmonary gas mixing and gas exchange. We examined the long-term course of blood gas measurements in relation to characteristics of lung function and the influence of different CFTR genotype upon this process. Methods Serial annual measurements of PaO2 and PaCO2 assessed in relation to lung function, providing functional residual capacity (FRCpleth), lung clearance index (LCI), trapped gas (VTG), airway resistance (sReff), and forced expiratory indices (FEV1, FEF50), were collected in 178 children (88 males; 90 females) with CF, over an age range of 5 to 18 years. Linear mixed model analysis and binary logistic regression analysis were used to define predominant lung function parameters influencing oxygenation and carbon dioxide elimination. Results PaO2 decreased linearly from age 5 to 18 years, and was mainly associated with FRCpleth, (p < 0.0001), FEV1 (p < 0.001), FEF50 (p < 0.002), and LCI (p < 0.002), indicating that oxygenation was associated with the degree of pulmonary hyperinflation, ventilation inhomogeneities and impeded airway function. PaCO2 showed a transitory phase of low PaCO2 values, mainly during the age range of 5 to 12 years. Both PaO2 and PaCO2 presented with different progression slopes within specific CFTR genotypes. Conclusion In the long-term evaluation of gas exchange characteristics, an association with different lung function patterns was found and was closely related to specific genotypes. Early examination of blood gases may reveal hypocarbia, presumably reflecting compensatory mechanisms to improve oxygenation.
Resumo:
OBJECTIVES Age- and height-adjusted spirometric lung function of South Asian children is lower than those of white children. It is unclear whether this is purely genetic, or partly explained by the environment. In this study, we assessed whether cultural factors, socioeconomic status, intrauterine growth, environmental exposures, or a family and personal history of wheeze contribute to explaining the ethnic differences in spirometric lung function. METHODS We studied children aged 9 to 14 years from a population-based cohort, including 1088 white children and 275 UK-born South Asians. Log-transformed spirometric data were analyzed using multiple linear regressions, adjusting for anthropometric factors. Five different additional models adjusted for (1) cultural factors, (2) indicators of socioeconomic status, (3) perinatal data reflecting intrauterine growth, (4) environmental exposures, and (5) personal and family history of wheeze. RESULTS Height- and gender-adjusted forced vital capacity (FVC) and forced expired volume in 1 second (FEV1) were lower in South Asian than white children (relative difference -11% and -9% respectively, P < .001), but PEF and FEF50 were similar (P ≥ .5). FEV1/FVC was higher in South Asians (1.8%, P < .001). These differences remained largely unchanged in all 5 alternative models. CONCLUSIONS Our study confirmed important differences in lung volumes between South Asian and white children. These were not attenuated after adjustment for cultural and socioeconomic factors and intrauterine growth, neither were they explained by differences in environmental exposures nor a personal or family history of wheeze. This suggests that differences in lung function may be mainly genetic in origin. The implication is that ethnicity-specific predicted values remain important specifically for South Asian children.
Resumo:
BACKGROUND Small airways disease is a hallmark in adults with persistent asthma, but little is known about small airways function in children with mild asthma and normal spirometry. We assessed ventilation heterogeneity, a marker of small airways function, with an easy tidal breath single-breath washout (SBW) technique in school-aged children with mild asthma and normal FEV1 and healthy age-matched control subjects. METHODS The primary outcome was the double-tracer gas phase III slope (SDTG), an index of ventilation heterogeneity in acinar airways derived from the tidal double-tracer gas SBW test. The second outcome was the nitrogen phase III slope (SN2), an index of global ventilation heterogeneity derived from the tidal nitrogen SBW test using pure oxygen. Triplicate SBW and spirometry tests were performed in healthy children (n = 35) and children with asthma (n = 31) at baseline and in children with asthma after bronchodilation. RESULTS Acinar (SDTG) but not global (SN2) ventilation heterogeneity was significantly increased in asthma despite normal FEV1. Of the 31 children with asthma, abnormal results were found for SDTG (≤ -2 z scores) in 11; forced expiratory flow, midexpiratory phase (FEF25%-75%) in three; and FEV1 in zero. After bronchodilation, SDTG, SN2, FEF25%-75%, and FEV1 significantly changed (mean [95% CI] change from baseline, 36% [15%-56%], 38% [18%-58%], 17% [9-25%], and 6% [3%-9%], respectively). CONCLUSIONS Abnormal acinar ventilation heterogeneity in one-third of the children suggests that small airways disease may be present despite rare and mild asthma symptoms and normal spirometry. The easy tidal SBW technique has considerable potential as a clinical and research outcome in children with asthma.
Resumo:
METHODS Spirometry datasets from South-Asian children were collated from four centres in India and five within the UK. Records with transcription errors, missing values for height or spirometry, and implausible values were excluded(n = 110). RESULTS Following exclusions, cross-sectional data were available from 8,124 children (56.3% male; 5-17 years). When compared with GLI-predicted values from White Europeans, forced expired volume in 1s (FEV1) and forced vital capacity (FVC) in South-Asian children were on average 15% lower, ranging from 4-19% between centres. By contrast, proportional reductions in FEV1 and FVC within all but two datasets meant that the FEV1/FVC ratio remained independent of ethnicity. The 'GLI-Other' equation fitted data from North India reasonably well while 'GLI-Black' equations provided a better approximation for South-Asian data than the 'GLI-White' equation. However, marked discrepancies in the mean lung function z-scores between centres especially when examined according to socio-economic conditions precluded derivation of a single South-Asian GLI-adjustment. CONCLUSION Until improved and more robust prediction equations can be derived, we recommend the use of 'GLI-Black' equations for interpreting most South-Asian data, although 'GLI-Other' may be more appropriate for North Indian data. Prospective data collection using standardised protocols to explore potential sources of variation due to socio-economic circumstances, secular changes in growth/predictors of lung function and ethnicities within the South-Asian classification are urgently required.
Resumo:
Our understanding of regional filling of the lung and regional ventilation distribution is based on studies using stepwise inhalation of radiolabelled tracer gases, magnetic resonance imaging and positron emission tomography. We aimed to investigate whether these differences in ventilation distribution at different end-expiratory levels (EELs) and tidal volumes (V (T)s) held also true during tidal breathing. Electrical impedance tomography (EIT) measurements were performed in ten healthy adults in the right lateral position. Five different EELs with four different V (T)s at each EEL were tested in random order, resulting in 19 combinations. There were no measurements for the combination of the highest EEL/highest V (T). EEL and V (T) were controlled by visual feedback based on airflow. The fraction of ventilation directed to different slices of the lung (VENT(RL1)-VENT(RL8)) and the rate of the regional filling of each slice versus the total lung were analysed. With increasing EEL but normal tidal volume, ventilation was preferentially distributed to the dependent lung and the filling of the right and left lung was more homogeneous. With increasing V (T) and maintained normal EEL (FRC), ventilation was preferentially distributed to the dependent lung and regional filling became more inhomogeneous (p < 0.05). We could demonstrate that regional and temporal ventilation distribution during tidal breathing was highly influenced by EEL and V (T).
Resumo:
Respiratory system input impedance (Zrs) at low to medium frequencies below 100 Hz, and study of its volume dependence, have been used extensively to quantify airway and tissue mechanics. Zrs at high oscillation frequencies including the first antiresonant frequency (far,1) may contain important information about airway mechanics. Changes in high-frequency Zrs with lung volume have not been studied. The volume-dependent behavior of high-frequency Zrs, specifically far,1 and respiratory system resistance at first antiresonance (Rrs(far,1)), was characterized in 16 healthy adults. Zrs was measured with a forced oscillation signal (5-302.5 Hz) through a wavetube setup. To track Zrs, subjects performed slow deep inspiratory and expiratory maneuvers over 30-s measurements, during which average impedance was calculated over 0.4-s intervals, with successive overlapping estimates every 0.156 s. Flow was measured using a pneumotachometer and integrated to obtain volume. Transpulmonary pressure dependence (Ptp) of Zrs was separately determined in five subjects. Both far,1 and Rrs(far,1) decreased with increasing lung volume and Ptp, consistent with an increase in airway caliber and decreased airway wall compliance as volume increased. These characterizations provide insight into airway mechanics, and are furthermore a necessary first step toward determining whether volume dependence of the first antiresonance is altered in disease.
Resumo:
ABSTRACT Varying pulmonary shunt fractions during the respiratory cycle cause oxygen oscillations during mechanical ventilation. In artificially damaged lungs, cyclical recruitment of atelectasis is responsible for varying shunt according to published evidence. We introduce a complimentary hypothesis that cyclically varying shunt in healthy lungs is caused by cyclical redistribution of pulmonary perfusion. Administration of crystalloid or colloid infusions would decrease oxygen oscillations if our hypothesis was right. Therefore, n = 14 mechanically ventilated healthy pigs were investigated in 2 groups: crystalloid (fluid) versus no-fluid administration. Additional volume interventions (colloid infusion, blood withdrawal) were carried out in each pig. Intra-aortal PaO(2) oscillations were recorded using fluorescence quenching technique. Phase shift of oxygen oscillations during altered inspiratory to expiratory (I:E) ventilation ratio and electrical impedance tomography (EIT) served as control methods to exclude that recruitment of atelectasis is responsible for oxygen oscillations. In hypovolemia relevant oxygen oscillations could be recorded. Fluid and volume state changed PaO(2) oscillations according to our hypothesis. Fluid administration led to a mean decline of 105.3 mmHg of the PaO(2) oscillations amplitude (P < 0.001). The difference of the amplitudes between colloid administration and blood withdrawal was 62.4 mmHg in pigs not having received fluids (P = 0.0059). Fluid and volume state also changed the oscillation phase during altered I:E ratio. EIT excluded changes of regional ventilation (i.e., recruitment of atelectasis) to be responsible for these oscillations. In healthy pigs, cyclical redistribution of pulmonary perfusion can explain the size of respiratory-dependent PaO(2) oscillations.
Resumo:
BACKGROUND: Morphological changes in preterm infants with bronchopulmonary dysplasia (BPD) have functional consequences on lung volume, ventilation inhomogeneity and respiratory mechanics. Although some studies have shown lower lung volumes and increased ventilation inhomogeneity in BPD infants, conflicting results exist possibly due to differences in sedation and measurement techniques. METHODOLOGY/PRINCIPAL FINDINGS: We studied 127 infants with BPD, 58 preterm infants without BPD and 239 healthy term-born infants, at a matched post-conceptional age of 44 weeks during quiet natural sleep according to ATS/ERS standards. Lung function parameters measured were functional residual capacity (FRC) and ventilation inhomogeneity by multiple breath washout as well as tidal breathing parameters. Preterm infants with BPD had only marginally lower FRC (21.4 mL/kg) than preterm infants without BPD (23.4 mL/kg) and term-born infants (22.6 mL/kg), though there was no trend with disease severity. They also showed higher respiratory rates and lower ratios of time to peak expiratory flow and expiratory time (t(PTEF)/t(E)) than healthy preterm and term controls. These changes were related to disease severity. No differences were found for ventilation inhomogeneity. CONCLUSIONS: Our results suggest that preterm infants with BPD have a high capacity to maintain functional lung volume during natural sleep. The alterations in breathing pattern with disease severity may reflect presence of adaptive mechanisms to cope with the disease process.