71 resultados para Flavor physics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show how to avoid unnecessary and uncontrolled assumptions usually made in the literature about soft SU(3) flavor symmetry breaking in determining the two-flavor nucleon matrix elements relevant for direct detection of weakly interacting massive particles (WIMPs). Based on SU(2) chiral perturbation theory, we provide expressions for the proton and neutron scalar couplings fp,nu and fp,nd with the pion-nucleon σ term as the only free parameter, which should be used in the analysis of direct detection experiments. This approach for the first time allows for an accurate assessment of hadronic uncertainties in spin-independent WIMP-nucleon scattering and for a reliable calculation of isospin-violating effects. We find that the traditional determinations of Vfpu−fnu and fpd−fnd are off by a factor of 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study lepton flavor observables in the Standard Model (SM) extended with all dimension-6 operators which are invariant under the SM gauge group. We calculate the complete one-loop predictions to the radiative lepton decays μ → eγ, τ → μγ and τ → eγ as well as to the closely related anomalous magnetic moments and electric dipole moments of charged leptons, taking into account all dimension-6 operators which can generate lepton flavor violation. Also the 3-body flavor violating charged lepton decays τ ± → μ ± μ + μ −, τ ± → e ± e + e −, τ ± → e ± μ + μ −, τ ± → μ ± e + e −, τ ± → e ∓ μ ± μ ±, τ ± → μ ∓ e ± e ± and μ ± → e ± e + e − and the Z 0 decays Z 0 → ℓ+iℓ−j are considered, taking into account all tree-level contributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ATLAS detector at the Large Hadron Collider is used to search for the lepton flavor violating process Z→eμ in pp collisions using 20.3  fb −1 of data collected at s √ =8  TeV . An enhancement in the eμ invariant mass spectrum is searched for at the Z -boson mass. The number of Z bosons produced in the data sample is estimated using events of similar topology, Z→ee and μμ , significantly reducing the systematic uncertainty in the measurement. There is no evidence of an enhancement at the Z -boson mass, resulting in an upper limit on the branching fraction, B(Z→eμ)<7.5×10 −7 at the 95% confidence level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A measurement of the B 0 s →J/ψϕ decay parameters, updated to include flavor tagging is reported using 4.9  fb −1 of integrated luminosity collected by the ATLAS detector from s √ =7  TeV pp collisions recorded in 2011 at the LHC. The values measured for the physical parameters are ϕ s 0.12±0.25(stat)±0.05(syst)  rad ΔΓ s 0.053±0.021(stat)±0.010(syst)  ps −1 Γ s 0.677±0.007(stat)±0.004(syst)  ps −1 |A ∥ (0)| 2 0.220±0.008(stat)±0.009(syst) |A 0 (0)| 2 0.529±0.006(stat)±0.012(syst) δ ⊥ =3.89±0.47(stat)±0.11(syst)  rad where the parameter ΔΓ s is constrained to be positive. The S -wave contribution was measured and found to be compatible with zero. Results for ϕ s and ΔΓ s are also presented as 68% and 95% likelihood contours, which show agreement with the Standard Model expectations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a sample of dilepton top-quark pair (tt ¯ ) candidate events, a study is performed of the production of top-quark pairs together with heavy-flavor (HF) quarks, the sum of tt ¯ +b+X and tt ¯ +c+X , collectively referred to as tt ¯  + HF . The data set used corresponds to an integrated luminosity of 4.7  fb −1 of proton-proton collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The presence of additional HF (b or c ) quarks in the tt ¯ sample is inferred by looking for events with at least three b -tagged jets, where two are attributed to the b quarks from the tt ¯ decays and the third to additional HF production. The dominant background to tt ¯  + HF in this sample is tt ¯ +jet events in which a light-flavor jet is misidentified as a heavy-flavor jet. To determine the heavy- and light-flavor content of the additional b -tagged jets, a fit to the vertex mass distribution of b -tagged jets in the sample is performed. The result of the fit shows that 79 ± 14 (stat) ± 22 (syst) of the 105 selected extra b -tagged jets originate from HF quarks, 3 standard deviations away from the hypothesis of zero tt ¯  + HF production. The result for extra HF production is quoted as a ratio (R HF ) of the cross section for tt ¯  + HF production to the cross section for tt ¯ production with at least one additional jet. Both cross sections are measured in a fiducial kinematic region within the ATLAS acceptance. R HF is measured to be [6.2±1.1(stat)±1.8(syst)]% for jets with p T >25  GeV and |η|<2.5 , in agreement with the expectations from Monte Carlo generators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SU(2) gauge theory with one Dirac flavor in the adjoint representation is investigated on a lattice. Initial results for the gluonic and mesonic spectrum, static potential from Wilson and Polyakov loops, and the anomalous dimension of the fermionic condensate from the Dirac mode number are presented. The results found are not consistent with conventional confining behavior, pointing instead tentatively towards a theory lying within or very near the onset of the conformal window, with the anomalous dimension of the fermionic condensate in the range 0.9≲γ∗≲0.95. The implications of our work for building a viable theory of strongly interacting dynamics beyond the standard model are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20\% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the computation of the kaon and D meson masses in the N_f = 2+1+1 twisted mass lattice QCD setup, where explicit heavy flavor and parity breaking occurs at finite lattice spacing. We present three methods suitable in this context and verify their consistency.