28 resultados para Fitness to drive assessment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The "Trond" protocol of nerve excitability tests has been used widely to assess axonal function in peripheral nerve. In this study, the routine Trond protocol was expanded to refine assessment of cAMP-dependent, hyperpolarization-activated current (I(h)) activity. I(h) activity is generated by hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels in response to hyperpolarization. It limits activity-dependent hyperpolarization, contributes to neuronal automaticity, and is implicated in chronic pain states. Published data regarding I(h) activity in motor nerve are scant. We used additional strong, prolonged hyperpolarizing conditioning stimuli in the threshold electrotonus component of the Trond protocol to demonstrate the time-course of activation of I(h) in motor axons. Fifteen healthy volunteers were tested on four occasions during 1 week. I(h) action was revealed in the threshold electrotonus by the limiting and often reversal, after about 100 ms, of the threshold increase caused by strong hyperpolarizing currents. Statistical analysis by repeated-measures analysis of variance enabled confidence limits to be established for variation between subjects and within subjects. The results demonstrate that, of all the excitability parameters, those dependent on I(h) were the most characteristic of an individual, because variance between subjects was more than four times the variance within subjects. This study demonstrates a reliable method for in vivo assessment of I(h,) and also serves to document the normal variability in nerve excitability properties within subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The pathology of pediatric severe therapy-resistant asthma (STRA) is little understood. OBJECTIVES: We hypothesized that STRA in children is characterized by airway eosinophilia and mast cell inflammation and is driven by the T(H)2 cytokines IL-4, IL-5, and IL-13. METHODS: Sixty-nine children (mean age, 11.8 years; interquartile range, 5.6-17.3 years; patients with STRA, n = 53; control subjects, n = 16) underwent fiberoptic bronchoscopy, bronchoalveolar lavage (BAL), and endobronchial biopsy. Airway inflammation, remodeling, and BAL fluid and biopsy specimen T(H)2 cytokines were quantified. Children with STRA also underwent symptom assessment (Asthma Control Test), spirometry, exhaled nitric oxide and induced sputum evaluation. RESULTS: Children with STRA had significantly increased BAL fluid and biopsy specimen eosinophil counts compared with those found in control subjects (BAL fluid, P < .001; biopsy specimen, P < .01); within the STRA group, there was marked between-patient variability in eosinophilia. Submucosal mast cell, neutrophil, and lymphocyte counts were similar in both groups. Reticular basement membrane thickness and airway smooth muscle were increased in patients with STRA compared with those found in control subjects (P < .0001 and P < .001, respectively). There was no increase in BAL fluid IL-4, IL-5, or IL-13 levels in patients with STRA compared with control subjects, and these cytokines were rarely detected in induced sputum. Biopsy IL-5(+) and IL-13(+) cell counts were also not higher in patients with STRA compared with those seen in control subjects. The subgroup (n = 15) of children with STRA with detectable BAL fluid T(H)2 cytokines had significantly lower lung function than those with undetectable BAL fluid T(H)2 cytokines. CONCLUSIONS: STRA in children was characterized by remodeling and variable airway eosinophil counts. However, unlike in adults, there was no neutrophilia, and despite the wide range in eosinophil counts, the T(H)2 mediators that are thought to drive allergic asthma were mostly absent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell competition is the short-range elimination of slow-dividing cells through apoptosis when confronted with a faster growing population. It is based on the comparison of relative cell fitness between neighboring cells and is a striking example of tissue adaptability that could play a central role in developmental error correction and cancer progression in both Drosophila melanogaster and mammals. Cell competition has led to the discovery of multiple pathways that affect cell fitness and drive cell elimination. The diversity of these pathways could reflect unrelated phenomena, yet recent evidence suggests some common wiring and the existence of a bona fide fitness comparison pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new Swiss federal licencing examination for human medicine (FLE) was developed and released in 2011. This paper describes the process from concept design to the first results obtained on implementation of the new examination. The development process was based on the Federal Act on University Medical Professions and involved all national stakeholders in this venture. During this process questions relating to the assessment aims, the assessment formats, the assessment dimensions, the examination content and necessary trade-offs were clarified. The aims were to create a feasible, fair, valid and psychometrically sound examination in accordance with international standards, thereby indicating the expected knowledge and skills level at the end of undergraduate medical education. Finally, a centrally managed and locally administered examination comprising a written multiple-choice element and a practical “clinical skills” test in the objective structured clinical examination (OSCE) format was developed. The first two administrations of the new FLE show that the examination concept could be implemented as intended. The anticipated psychometric indices were achieved and the results support the validity of the examination. Possible changes to the format or content in the future are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED Thyroid malignancies are the most common type of endocrine tumors. Of the various histologic subtypes, anaplastic thyroid carcinoma (ATC) represents a subset of all cases but is responsible for a significant proportion of thyroid cancer-related mortality. Indeed, ATC is regarded as one of the more aggressive and hard to treat forms of cancer. To date, there is a paucity of relevant model systems to critically evaluate how the signature genetic abnormalities detected in human ATC contribute to disease pathogenesis. Mutational activation of the BRAF protooncogene is detected in approximately 40% of papillary thyroid carcinoma (PTC) and in 25% of ATC. Moreover, in ATC, mutated BRAF is frequently found in combination with gain-of-function mutations in the p110 catalytic subunit of PI3'-Kinase (PIK3CA) or loss-of-function alterations in either the p53 (TP53) or PTEN tumor suppressors. Using mice with conditional, thyrocyte-specific expression of BRAF(V600E), we previously developed a model of PTC. However, as in humans, BRAF(V600E)-induced mouse PTC is indolent and does not lead to rapid development of end-stage disease. Here, we use mice carrying a conditional allele of PIK3CA to demonstrate that, although mutationally activated PIK3CA(H1047R) is unable to drive transformation on its own, when combined with BRAF(V600E) in thyrocytes, this leads to development of lethal ATC in mice. Combined, these data demonstrate that the BRAF(V600E) cooperates with either PIK3CA(H1074R) or with silencing of the tumor-suppressor PTEN, to promote development of anaplastic thyroid carcinoma. IMPLICATIONS This genetically relevant mouse model of ATC will be an invaluable platform for preclinical testing of pathway-targeted therapies for the prevention and treatment of thyroid carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the reliability of the conditioned pain modulation (CPM) paradigm assessed by an objective electrophysiological method, the nociceptive withdrawal reflex (NWR), and psychophysical measures, using hypothetical sample sizes for future studies as analytical goals. Thirty-four healthy volunteers participated in two identical experimental sessions, separated by 1 to 3 weeks. In each session, the cold pressor test (CPT) was used to induce CPM, and the NWR thresholds, electrical pain detection thresholds and pain intensity ratings after suprathreshold electrical stimulation were assessed before and during CPT. CPM was consistently detected by all methods, and the electrophysiological measures did not introduce additional variation to the assessment. In particular, 99% of the trials resulted in higher NWR thresholds during CPT, with an average increase of 3.4 mA (p<0.001). Similarly, 96% of the trials resulted in higher electrical pain detection thresholds during CPT, with an average increase of 2.2 mA (p<0.001). Pain intensity ratings after suprathreshold electrical stimulation were reduced during CPT in 84% of the trials, displaying an average decrease of 1.5 points in a numeric rating scale (p<0.001). Under these experimental conditions, CPM reliability was acceptable for all assessment methods in terms of sample sizes for potential experiments. The presented results are encouraging with regards to the use of the CPM as an assessment tool in experimental and clinical pain. Trial registration: Clinical Trials.gov NCT01636440.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessing and managing risks relating to the consumption of food stuffs for humans and to the environment has been one of the most complex legal issues in WTO law, ever since the Agreement on Sanitary and Phytosanitary Measures was adopted at the end of the Uruguay Round and entered into force in 1995. The problem was expounded in a number of cases. Panels and the Appellate Body adopted different philosophies in interpreting the agreement and the basic concept of risk assessment as defined in Annex A para. 4 of the Agreement. Risk assessment entails fundamental question on law and science. Different interpretations reflect different underlying perceptions of science and its relationship to the law. The present thesis supported by the Swiss National Research Foundation undertakes an in-depth analysis of these underlying perceptions. The author expounds the essence and differences of positivism and relativism in philosophy and natural sciences. He clarifies the relationship of fundamental concepts such as risk, hazards and probability. This investigation is a remarkable effort on the part of lawyer keen to learn more about the fundamentals based upon which the law – often unconsciously – is operated by the legal profession and the trade community. Based upon these insights, he turns to a critical assessment of jurisprudence both of panels and the Appellate Body. Extensively referring and discussing the literature, he deconstructs findings and decisions in light of implied and assumed underlying philosophies and perceptions as to the relationship of law and science, in particular in the field of food standards. Finding that both positivism and relativism does not provide adequate answers, the author turns critical rationalism and applies the methodologies of falsification developed by Karl R. Popper. Critical rationalism allows combining discourse in science and law and helps preparing the ground for a new approach to risk assessment and risk management. Linking the problem to the doctrine of multilevel governance the author develops a theory allocating risk assessment to international for a while leaving the matter of risk management to national and democratically accountable government. While the author throughout the thesis questions the possibility of separating risk assessment and risk management, the thesis offers new avenues which may assist in structuring a complex and difficult problem

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To compare the accuracy of radiography and computed tomography (CT) in predicting implant position in relation to the vertebral canal in the cervical and thoracolumbar vertebral column. STUDY DESIGN In vitro imaging and anatomic study. ANIMALS Medium-sized canine cadaver vertebral columns (n=12). METHODS Steinmann pins were inserted into cervical and thoracolumbar vertebrae based on established landmarks but without predetermination of vertebral canal violation. Radiographs and CT images were obtained and evaluated by 6 individuals. A random subset of pins was evaluated for ability to distinguish left from right pins on radiographs. The ability to correctly identify vertebral canal penetration for all pins was assessed both on radiographs and CT. Spines were then anatomically prepared and visual examination of pin penetration into the canal served as the gold standard. RESULTS Left/right accuracy was 93.1%. Overall sensitivity of radiographs and CT to detect vertebral canal penetration by an implant were significantly different and estimated as 50.7% and 93.4%, respectively (P<.0001). Sensitivity was significantly higher for complete versus partial penetration and for radiologists compared with nonradiologists for both imaging modalities. Overall specificity of radiographs and CT to detect vertebral canal penetration was 82.9% and 86.4%, respectively (P=.049). CONCLUSIONS CT was superior to radiographic assessment and is the recommended imaging modality to assess penetration into the vertebral canal. CLINICAL RELEVANCE CT is significantly more accurate in identifying vertebral canal violation by Steinmann pins and should be performed postoperatively to assess implant position.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulation of tissue size requires fine tuning at the single-cell level of proliferation rate, cell volume, and cell death. Whereas the adjustment of proliferation and growth has been widely studied [1, 2, 3, 4 and 5], the contribution of cell death and its adjustment to tissue-scale parameters have been so far much less explored. Recently, it was shown that epithelial cells could be eliminated by live-cell delamination in response to an increase of cell density [6]. Cell delamination was supposed to occur independently of caspase activation and was suggested to be based on a gradual and spontaneous disappearance of junctions in the delaminating cells [6]. Studying the elimination of cells in the midline region of the Drosophila pupal notum, we found that, contrary to what was suggested before, Caspase 3 activation precedes and is required for cell delamination. Yet, using particle image velocimetry, genetics, and laser-induced perturbations, we confirmed [ 6] that local tissue crowding is necessary and sufficient to drive cell elimination and that cell elimination is independent of known fitness-dependent competition pathways [ 7, 8 and 9]. Accordingly, activation of the oncogene Ras in clones was sufficient to compress the neighboring tissue and eliminate cells up to several cell diameters away from the clones. Mechanical stress has been previously proposed to contribute to cell competition [ 10 and 11]. These results provide the first experimental evidences that crowding-induced death could be an alternative mode of super-competition, namely mechanical super-competition, independent of known fitness markers [ 7, 8 and 9], that could promote tumor growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Keel bone damage (KBD) is a critical issue facing the laying hen industry today as a result of the likely pain leading to compromised welfare and the potential for reduced productivity. Recent reports suggest that damage, while highly variable and likely dependent on a host of factors, extends to all systems (including battery cages, furnished cages, and non-cage systems), genetic lines, and management styles. Despite the extent of the problem, the research community remains uncertain as to the causes and influencing factors of KBD. Although progress has been made investigating these factors, the overall effort is hindered by several issues related to the assessment of KBD, including quality and variation in the methods used between research groups. These issues prevent effective comparison of studies, as well as difficulties in identifying the presence of damage leading to poor accuracy and reliability. The current manuscript seeks to resolve these issues by offering precise definitions for types of KBD, reviewing methods for assessment, and providing recommendations that can improve the accuracy and reliability of those assessments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigenic variation of the intestinal protozoan parasite Giardia lamblia is caused by an exchange of the parasite's variant surface protein (VSP) coat. Many investigations on antigenic variation were performed with G. lamblia clone GS/M-83-H7 which produces surface antigen VSP H7. To generate novel information on giardial vsp gene transcription, vsp RNA levels were assessed by quantitative reverse transcription-(RT)-PCR in both axenic VSP H7-type trophozoites and subvariants obtained after negative selection of GS/M-83-H7 trophozoites by treatment with a cytotoxic, VSP H7-specific monoclonal antibody. Our investigation was not restricted to the assessment of the sense vsp transcript levels but also included an approach aimed at the detection of complementary antisense vsp transcripts within the two trophozoite populations. We found that sense vsp H7 RNA predominated in VSP H7-type trophozoites while sense RNA from only one (vsp IVg) of 8 subvariant vsp genes totally analysed predominated in subvariant-type trophozoites. Interestingly, the two trophozoite populations exhibited a similar relative distribution regarding the vsp H7 and vsp IVg antisense RNA molecules. An analogous sense versus antisense RNA pattern was also observed when the transcripts of gene cwp 1 (encoding cyst wall protein 1) were investigated. Here, both types of RNA molecules only appeared after cwp 1 had been induced through in vitro encystation of the parasite. These findings for the first time demonstrated that giardial antisense RNA production did not occur in a constitutive manner but was directly linked to complementary sense RNA production after activation of the respective gene systems.