21 resultados para Female Reproductive Tract Development
Resumo:
Partial or full life-cycle tests are needed to assess the potential of endocrine-disrupting compounds (EDCs) to adversely affect development and reproduction of fish. Small fish species such as zebrafish, Danio rerio, are under consideration as model organisms for appropriate test protocols. The present study examines how reproductive effects resulting from exposure of zebrafish to the synthetic estrogen 17alpha-ethinylestradiol (EE2) vary with concentration (0.05 to 10 ng EE2 L(-1), nominal), and with timing/duration of exposure (partial life-cycle, full life-cycle, and two-generation exposure). Partial life-cycle exposure of the parental (F1) generation until completion of gonad differentiation (0-75 d postfertilization, dpf) impaired juvenile growth, time to sexual maturity, adult fecundity (egg production/female/day), and adult fertilization success at 1.1 ng EE2 L(-1) and higher. Lifelong exposure of the F1 generation until 177 dpf resulted in lowest observed effect concentrations (LOECs) for time to sexual maturity, fecundity, and fertilization success identical to those of the developmental test (0-75 dpf), but the slope of the concentration-response curve was steeper. Reproduction of zebrafish was completely inhibited at 9.3 ng EE2 L(-1), and this was essentially irreversible as a 3-mo depuration restored fertilization success to only a very low rate. Accordingly, elevated endogenous vitellogenin (VTG) synthesis and degenerative changes in gonad morphology persisted in depurated zebrafish. Full life-cycle exposure of the filial (F2) generation until 162 dpf impaired growth, delayed onset of spawning and reduced fecundity and fertilization success at 2.0 ng EE2 L(-1). In conclusion, results show that the impact of estrogenic agents on zebrafish sexual development and reproductive functions as well as the reversibility of effects, varies with exposure concentration (reversibility at < or = 1.1 ng EE2 L(-1) and irreversibility at 9.3 ng EE2 L(-1)), and between partial and full life-cycle exposure (exposure to 10 ng EE2 L(-1) during critical period exerted no permanent effect on sexual differentiation, but life-cycle exposure did).
Resumo:
Growth and sexual development are closely interlinked in fish; however, no reports exist on potential effects of estrogen on the GH/IGF-I-axis in developing fish. We investigate whether estrogen exposure during early development affects growth and the IGF-I system, both at the systemic and tissue level. Tilapia were fed from 10 to 40 days post fertilization (DPF) with 17alpha-ethinylestradiol (EE(2)). At 50, 75, 90, and 165 DPF, length, weight, sex ratio, serum IGF-I (RIA), pituitary GH mRNA and IGF-I, and estrogen receptor alpha (ERalpha) mRNA in liver, gonads, brain, and gills (real-time PCR) were determined and the results correlated to those of in situ hybridization for IGF-I. Developmental exposure to EE(2) had persistent effects on sex ratio and growth. Serum IGF-I, hepatic IGF-I mRNA, and the number of IGF-I mRNA-containing hepatocytes were significantly decreased at 75 DPF, while liver ERalpha mRNA was significantly induced. At 75 DPF, a transient decline of IGF-I mRNA and a largely reduced number of IGF-I mRNA-containing neurons were observed in the female brain. In both sexes, pituitary GH mRNA was significantly suppressed. A transient downregulation of IGF-I mRNA occurred in ovaries (75 DPF) and testes (90 DPF). In agreement, in situ hybridization revealed less IGF-I mRNA signals in granulosa and germ cells. Our results show for the first time that developmental estrogen treatment impairs GH/IGF-I expression in fish, and that the effects persist. These long-lasting effects both seem to be exerted indirectly via inhibition of pituitary GH and directly by suppression of local IGF-I in organ-specific cells.
Resumo:
Ovariectomy interrupts the regulatory loop in the hypothalamus-pituitary-gonad axis, leading to a several-fold increase in gonadotropin levels. This rise in hormonal secretion may play a causal role in ovariectomy-related urinary incontinence. The purpose of this study was to examine the effect of ovariectomy in bitches on the expression of GnRH- and LH-receptors in the lower urinary tract, and assess the relationship between receptor expression and plasma gonadotropin concentrations. Plasma gonadotropins were measured in 37 client-owned bitches. Biopsies were harvested from the mid-ventral bladder wall in all dogs, and from nine further locations within the lower urinary tract in 17 of the 37 animals. Messenger RNA of the LH and GnRH receptors was quantified using RT-PCR with the TaqMan Universal PCR Master Mix. Gonadotropins were measured with a canine-specific FSH-immunoradiometric assay and LH-radioimmunoassay. The hierarchical mixed ANOVA model using MINITAB, Mann-Whitney U-test, unpaired means comparison and linear regressions using StatView were applied for statistical analyses. Messenger RNA for both receptors was detected in all biopsy samples. Age was negatively correlated to mRNA expression of the LH and the GnRH receptors. A relationship between the mRNA values and the plasma gonadotropin concentrations was not established. Evaluation of results within each of the biopsy locations revealed greater LH-receptor expression in the proximal second quarter of the urethra in spayed bitches than in intact bitches (P=0.0481). Increased mRNA expression of LH receptors in this location could possibly play a role in the decrease in closing pressure of the urethra following ovariectomy.
Resumo:
Chronic ethanol consumption is a strong risk factor for the development of certain types of cancer including those of the upper aerodigestive tract, the liver, the large intestine and the female breast. Multiple mechanisms are involved in alcohol-mediated carcinogenesis. Among those the action of acetaldehyde (AA), the first metabolite of ethanol oxidation is of particular interest. AA is toxic, mutagenic and carcinogenic in animal experiments. AA binds to DNA and forms carcinogenic adducts. Direct evidence of the role of AA in alcohol-associated carcinogenesis derived from genetic linkage studies in alcoholics. Polymorphisms or mutations of genes coding for AA generation or detoxifying enzymes resulting in elevated AA concentrations are associated with increased cancer risk. Approximately 40% of Japanese, Koreans or Chinese carry the AA dehydrogenase 2*2 (ALDH2*2) allele in its heterozygous form. This allele codes for an ALDH2 enzyme with little activity leading to high AA concentrations after the consumption of even small amounts of alcohol. When individuals with this allele consume ethanol chronically, a significant increased risk for upper alimentary tract and colorectal cancer is noted. In Caucasians, alcohol dehydrogenase 1C*1 (ADH1C*1) allele encodes for an ADH isoenzyme which produces 2.5 times more AA than the corresponding allele ADH1C*2. In studies with moderate to high alcohol intake, ADH1C*1 allele frequency and rate of homozygosity was found to be significantly associated with an increased risk for cancer of the upper aerodigestive tract, the liver, the colon and the female breast. These studies underline the important role of acetaldehyde in ethanol-mediated carcinogenesis.
Resumo:
A rare form of alternative reproductive behaviour without simultaneous parasitic spawning was observed in Ophthalmotilapia ventralis, a lekking mouth-brooding cichlid from Lake Tanganyika. Floater males attempted to sneak opportunistically into the territory to actively court the female, while the owner (bourgeois male) defended the territory against other potential intruders. Floater males had more body fat than territory owners and generally higher condition factors. In field experiments, the response of bourgeois males and courted females was tested towards floaters and egg predators (a catfish Synodontis multipunctatus) present in the territories. Territory owners responded aggressively particularly to floaters, and female responsiveness to bourgeois male courtship tended to decline when floaters were present. The potential influence of reproductive parasitism on sexual selection in mouth-brooding cichlids is discussed.