51 resultados para Feedback Mechanism in MIMO


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four Large Münsterländer cross-bred dogs affected with black hair follicular dysplasia (BHFD) and one unaffected control littermate were observed, and skin was sampled weekly over the first 19 weeks of life. Affected dogs were born with silvery grey hair, a consequence of melanin clumping in the hair shafts. Hair bulb melanocytes were densely pigmented, and contained abundant stage IV melanosomes but adjacent matrix keratinocytes lacked melanosomes. Melanin clumping was not prominent in epidermal melanocytes in the haired skin but occurred in the foot pads. Follicular changes progressed from bulbar clumping, clumping in the isthmus/infundibulum and finally to dysplastic hair shafts. Alopecia developed progressively in pigmented areas. Silver-grey hair, melanin clumping, accumulation of stage IV melanosomes within melanocytes and insufficient melanin transfer to adjacent keratinocytes are also classic features of human Griscelli syndrome. The underlying cause in Griscelli syndrome is a defect of melanocytic intracellular transport proteins leading to inadequate and disorganized melanosome transfer to keratinocytes with resultant melanin clumping. In view of the correlation in the phenotype, histology and ultrastructure between both disorders, a defect in intracellular melanosome transport is postulated as the pathogenic mechanism in BHFD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(-)-Menthol, a monoterpene from Mentha species (Lamiaceae), has been shown to inhibit bone resorption in vivo by an unknown mechanism. In the present study, plasma and urine profiling in rats determined by GC/MS demonstrate that (-)-menthol is extensively metabolized, mainly by hydroxylation and carboxylation, and excreted in the urine, in part as glucuronides. In plasma, very low concentrations of (-)-menthol metabolites were detected after a single dose of (-)-menthol, whereas after repeated treatment, several times higher concentrations and long residence times were measured. In contrast, the elimination of unchanged (-)-menthol was increased by repeated treatment. (-)-Menthol, at concentrations found in plasma, did not inhibit bone resorption in cultured mouse calvaria (skull). However, the neutral metabolites of (-)-menthol, extracted from urine of rats fed with (-)-menthol, inhibited bone resorption in vitro, the concentrations being at plasma level or higher. These results suggest that not (-)-menthol itself, but one or several of its neutral metabolites inhibit the bone resorbing cells in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monoterpenes, present in aromatic plants, are known to inhibit bone resorption in vivo. In this in vitro study, they inhibited the activation of osteoclasts only at high concentrations but inhibited the formation at much lower concentrations. Therefore, monoterpenes may act in vivo directly on osteoclastogenesis. INTRODUCTION: Monoterpenes are the major components of essential oils, which are formed in many plants. Typically, they are found in herbs and certain fruits. When fed to rats, they inhibit bone resorption by an unknown mechanism. In this study, their effect on the activity and formation of osteoclasts in vitro was studied. MATERIALS AND METHODS: The effect of monoterpenes on the development of osteoclasts was studied in co-cultures of bone marrow cells and osteoblasts and in cultures of spleen cells grown with colony stimulating factor (CSF)-1 and RANKL. In cultures of primary osteoblasts, alkaline phosphatase activity and levels of mRNA encoding RANKL and osteoprotegerin (OPG) mRNA (RT-PCR), and in osteoblast and spleen cell cultures, lactate dehydrogenase activity, a measure of toxicity, were determined. The activity of isolated rat osteoclasts was determined by counting the osteoclasts with actin rings using histofluorometry. RESULTS: The monoterpenes inhibited the formation of osteoclasts more strongly in co-cultures (> or = 1 microM) than in cultures of spleen cells (> or = 10 microM). They had a minor effect on osteoblasts. Toxic effects were not observed. The inhibition of the formation of osteoclasts was not reversed by the addition of farnesol and geranylgeraniol, excluding an effect of the monoterpenes through the mevalonate pathway. A high concentration of 1 mM was required to inhibit the activation of osteoclasts. This effect, shown for menthol and borneol, was reversible. CONCLUSIONS: The results suggest that the monoterpenes inhibit bone resorption in vivo through a direct effect on the formation of osteoclasts acting mainly on the hemopoietic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: A characteristic feature of borderline personality disorder (BPD) is self-injurious behavior in conjunction with stress-induced reduction of pain perception. Reduced pain sensitivity has been experimentally confirmed in patients with BPD, but the neural correlates of antinociceptive mechanisms in BPD are unknown. We predicted that heat stimuli in patients with BPD would activate brain areas concerned with cognitive and emotional evaluation of pain. OBJECTIVE: To assess the psychophysical properties and neural correlates of altered pain processing in patients with BPD. DESIGN: Case-control study. SETTING: A university hospital. PARTICIPANTS: Twelve women with BPD and self-injurious behavior and 12 age-matched control subjects. INTERVENTIONS: Psychophysical assessment and blood oxygen level-dependent functional magnetic resonance imaging during heat stimulation with fixed-temperature heat stimuli and individual-temperature stimuli adjusted for equal subjective pain in all the participants. MAIN OUTCOME MEASURE: Blood oxygen level-dependent functional magnetic resonance imaging signal changes during heat pain stimulation. RESULTS: Patients with BPD had higher pain thresholds and smaller overall volumes of activity than controls in response to identical heat stimuli. When the stimulus temperature was individually adjusted for equal subjective pain level, overall volumes of activity were similar, although regional patterns differed significantly. Patient response was greater in the dorsolateral prefrontal cortex and smaller in the posterior parietal cortex. Pain also produced neural deactivation in the perigenual anterior cingulate gyrus and the amygdala in patients with BPD. CONCLUSION: The interaction between increased pain-induced response in the dorsolateral prefrontal cortex and deactivation in the anterior cingulate and the amygdala is associated with an antinociceptive mechanism in patients with BPD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-8 (IL-8) activates neutrophils via the chemokine receptors CXCR1 and CXCR2. However, the airways of individuals with cystic fibrosis are frequently colonized by bacterial pathogens, despite the presence of large numbers of neutrophils and IL-8. Here we show that IL-8 promotes bacterial killing by neutrophils through CXCR1 but not CXCR2. Unopposed proteolytic activity in the airways of individuals with cystic fibrosis cleaved CXCR1 on neutrophils and disabled their bacterial-killing capacity. These effects were protease concentration-dependent and also occurred to a lesser extent in individuals with chronic obstructive pulmonary disease. Receptor cleavage induced the release of glycosylated CXCR1 fragments that were capable of stimulating IL-8 production in bronchial epithelial cells via Toll-like receptor 2. In vivo inhibition of proteases by inhalation of alpha1-antitrypsin restored CXCR1 expression and improved bacterial killing in individuals with cystic fibrosis. The cleavage of CXCR1, the functional consequences of its cleavage, and the identification of soluble CXCR1 fragments that behave as bioactive components represent a new pathophysiologic mechanism in cystic fibrosis and other chronic lung diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of macrophages in the clearance of particles with diameters less than 100 nm (ultrafine or nanoparticles) is not well established, although these particles deposit highly efficiently in peripheral lungs, where particle phagocytosis by macrophages is the primary clearance mechanism. To investigate the uptake of nanoparticles by lung phagocytes, we analyzed the distribution of titanium dioxide particles of 20 nm count median diameter in macrophages obtained by bronchoalveolar lavage at 1 hour and 24 hours after a 1-hour aerosol inhalation. Differential cell counts revealing greater than 96% macrophages and less than 1% neutrophils and lymphocytes excluded inflammatory cell responses. Employing energy-filtering transmission electron microscopy (EFTEM) for elemental microanalysis, we examined 1,594 macrophage profiles in the 1-hour group (n = 6) and 1,609 in the 24-hour group (n = 6). We found 4 particles in 3 macrophage profiles at 1 hour and 47 particles in 27 macrophage profiles at 24 hours. Model-based data analysis revealed an uptake of 0.06 to 0.12% ultrafine titanium-dioxide particles by lung-surface macrophages within 24 hours. Mean (SD) particle diameters were 31 (8) nm at 1 hour and 34 (10) nm at 24 hours. Particles were localized adjacent (within 13-83 nm) to the membrane in vesicles with mean (SD) diameters of 592 (375) nm at 1 hour and 414 (309) nm at 24 hours, containing other material like surfactant. Additional screening of macrophage profiles by conventional TEM revealed no evidence for agglomerated nanoparticles. These results give evidence for a sporadic and rather unspecific uptake of TiO(2)-nanoparticles by lung-surface macrophages within 24 hours after their deposition, and hence for an insufficient role of the key clearance mechanism in peripheral lungs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contribution of basophils in allergic disease and other Th2-type immune responses depends on their persistence at sites of inflammation, but the ligands and molecular pathways supporting basophil survival are largely unknown. The comparison of rates of apoptosis and of the expression of antiapoptotic proteins in different human granulocyte types revealed that basophils have a considerably longer spontaneous life span than neutrophils and eosinophils consistent with high levels of constitutive Bcl-2 expression. Interleukin-3 (IL-3) is the only ligand that efficiently protects basophils from apoptosis as evidenced by screening a large number of stimuli. IL-3 up-regulates the expression of the antiapoptotic proteins cIAP2, Mcl-1, and Bcl-X(L) and induces a rapid and sustained de novo expression of the serine/threonine kinase Pim1 that closely correlates with cytokine-enhanced survival. Inhibitor studies and protein transduction of primary basophils using wild-type and kinase-dead Pim1-Tat fusion-proteins demonstrate the functional importance of Pim1 induction in the IL-3-enhanced survival. Our data further indicate that the antiapoptotic Pim1-mediated pathway operates independently of PI3-kinase but involves the activation of p38 MAPK. The induction of Pim1 leading to PI3-kinase-independent survival as described here for basophils may also be a relevant antiapoptotic mechanism in other terminally differentiated leukocyte types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During sepsis, a severe systemic disorder, micronutrients often are decreased. Apoptosis is regarded as an important mechanism in the development of often significant immunosuppression in the course of the disease. This study aimed to investigate alpha-tocopherol and selenium in reference to apoptosis in patients with sepsis. 16 patients were enrolled as soon as they fulfilled the criteria of severe sepsis. 10 intensive care patients without sepsis and 11 healthy volunteers served as controls. alpha-Tocopherol, selenium and nucleosomes were measured in serum. Phosphatidylserine externalization and Bcl-2 expression were analyzed in T-cells by flow cytometry. Serum alpha-tocopherol and selenium were decreased in severe sepsis but not in non-septic critically ill patients (p < 0.05). Conversely, markers of apoptosis were increased in sepsis but not in critically ill control patients: Nucleosomes were found to be elevated 3 fold in serum (p < 0.05) and phosphatidylserine was externalized on an expanded subpopulation of T-cells (p < 0.05) while Bcl-2 was expressed at lower levels (p < 0.05). The decrease of micronutrients correlated with markers of accelerated apoptosis. Accelerated apoptosis in sepsis is associated with low alpha-tocopherol and selenium. The results support the investigation of micronutrient supplementation strategies in severe sepsis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mast cell degranulation is pivotal to allergic diseases; investigating novel pathways triggering mast cell degranulation would undoubtedly have important therapeutic potential. FcepsilonRI-mediated degranulation has contradictorily been shown to require SphK1 or SphK2, depending on the reports. We investigated the in vitro and in vivo specific role(s) of SphK1 and SphK2 in FcepsilonRI-mediated responses, using specific small interfering RNA-gene silencing. The small interfering RNA-knockdown of SphK1 in mast cells inhibited several signaling mechanisms and effector functions, triggered by FcepsilonRI stimulation including: Ca(2+) signals, NFkappaB activation, degranulation, cytokine/chemokine, and eicosanoid production, whereas silencing SphK2 had no effect at all. Moreover, silencing SPHK1 in vivo, in different strains of mice, strongly inhibited mast cell-mediated anaphylaxis, including inhibition of vascular permeability, tissue mast cell degranulation, changes in temperature, and serum histamine and cytokine levels, whereas silencing SPHK2 had no effect and the mice developed anaphylaxis. Our data differ from a recent report using SPHK1(-/-) and SPHK2(-/-) mice, which showed that SphK2 was required for FcepsilonRI-mediated mast cell responses. We performed experiments in mast cells derived from SPHK1(-/-) and SPHK2(-/-) mice and show that the calcium response and degranulation, triggered by FcepsilonRI-cross-linking, is not different from that triggered in wild-type cells. Moreover, IgE-mediated anaphylaxis in the knockout mice showed similar levels in temperature changes and serum histamine to that from wild-type mice, indicating that there was no protection from anaphylaxis for either knockout mice. Thus, our data strongly suggest a previously unrecognized compensatory mechanism in the knockout mice, and establishes a role for SphK1 in IgE-mediated mast cell responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptosis, the most common form of cell death, is a key mechanism in the build up and maintenance of both innate and adaptive immunity. Central to the apoptotic process is a family of intracellular cysteine proteases with aspartate-specificity, called caspases. Caspases are counter-regulated by multiple anti-apoptotic molecules, and the expression of the latter in leukocytes is largely dependent on survival factors. Therefore, the physiologic rates of apoptosis change under pathologic conditions. For instance, in inflammation, the expression of survival factors is usually elevated, resulting in increased cell survival and consequently in the accumulation of the involved immune cells. In many allergic diseases, eosinophil apoptosis is delayed contributing to both blood and tissue eosinophilia. Besides eosinophils, apoptosis of other leukocytes is also frequently prevented or delayed during allergic inflammatory processes. In contrast to inflammatory cells, accelerated cell death is often observed in epithelial cells, a mechanism, which amplifies or at least maintains allergic inflammation. In conclusion, deregulated cell death is a common phenomenon of allergic diseases that likely plays an important role in their pathogenesis. Whether the apoptosis is too little or too much depends on the cell type. In this review, we discuss the regulation of the lifespan of the participating leukocytes in allergic inflammatory responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Balkan endemic nephropathy (BEN) represents a chronic progressive interstitial nephritis in striking correlation with uroepithelial tumours of the upper urinary tract. The disease has endemic distribution in the Danube river regions in several Balkan countries. DNA methylation is a primary epigenetic modification that is involved in major processes such as cancer, genomic imprinting, gene silencing, etc. The significance of CpG island methylation status in normal development, cell differentiation and gene expression is widely recognized, although still stays poorly understood. Methods We performed whole genome DNA methylation array analysis on DNA pool samples from peripheral blood from 159 affected individuals and 170 healthy individuals. This technique allowed us to determine the methylation status of 27 627 CpG islands throughout the whole genome in healthy controls and BEN patients. Thus we obtained the methylation profile of BEN patients from Bulgarian and Serbian endemic regions. Results Using specifically developed software we compared the methylation profiles of BEN patients and corresponding controls and revealed the differently methylated regions. We then compared the DMRs between all patient-control pairs to determine common changes in the epigenetic profiles. SEC61G, IL17RA, HDAC11 proved to be differently methylated throughout all patient-control pairs. The CpG islands of all 3 genes were hypomethylated compared to controls. This suggests that dysregulation of these genes involved in immunological response could be a common mechanism in BEN pathogenesis in both endemic regions and in both genders. Conclusion Our data propose a new hypothesis that immunologic dysregulation has a place in BEN etiopathogenesis. Keywords: Epigenetics; Whole genome array analysis; Balkan endemic nephropathy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most rodents and some other mammals, the removal of one lung results in compensatory growth associated with dramatic angiogenesis and complete restoration of lung capacity. One pivotal mechanism in neoalveolarization is neovascularization, because without angiogenesis new alveoli can not be formed. The aim of this study is to image and analyze three-dimensionally the different patterns of neovascularization seen following pneumonectomy in mice on a sub-micron-scale. C57/BL6 mice underwent a left-sided pneumonectomy. Lungs were harvested at various timepoints after pneumonectomy. Volume analysis by microCT revealed a striking increase of 143 percent in the cardiac lobe 14 days after pneumonectomy. Analysis of microvascular corrosion casting demonstrated spatially heterogenous vascular densitities which were in line with the perivascular and subpleural compensatory growth pattern observed in anti-PCNA-stained lung sections. Within these regions an expansion of the vascular plexus with increased pillar formations and sprouting angiogenesis, originating both from pre-existing bronchial and pulmonary vessels was observed. Also, type II pneumocytes and alveolar macrophages were seen to participate actively in alveolar neo-angiogenesis after pneumonectomy. 3D-visualizations obtained by high-resolution synchrotron radiation X-ray tomographic microscopy showed the appearance of double-layered vessels and bud-like alveolar baskets as have already been described in normal lung development. Scanning electron microscopy data of microvascular architecture also revealed a replication of perialveolar vessel networks through septum formation as already seen in developmental alveolarization. In addition, the appearance of pillar formations and duplications on alveolar entrance ring vessels in mature alveoli are indicative of vascular remodeling. These findings indicate that sprouting and intussusceptive angiogenesis are pivotal mechanisms in adult lung alveolarization after pneumonectomy. Various forms of developmental neoalveolarization may also be considered to contribute in compensatory lung regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Approximately 10% of sudden infant death syndrome (SIDS) may stem from cardiac channelopathies. The KCNJ8-encoded Kir6.1 (K(ATP)) channel critically regulates vascular tone and cardiac adaptive response to systemic metabolic stressors, including sepsis. KCNJ8-deficient mice are prone to premature sudden death, particularly with infection. We determined the spectrum, prevalence, and function of KCNJ8 mutations in a large SIDS cohort. METHODS AND RESULTS Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing, comprehensive open reading frame/splice-site mutational analysis of KCNJ8 was performed on genomic DNA isolated from necropsy tissue on 292 unrelated SIDS cases (178 males, 204 white; age, 2.9±1.9 months). KCNJ8 mutations were coexpressed heterologously with SUR2A in COS-1 cells and characterized using whole-cell patch-clamp. Two novel KCNJ8 mutations were identified. A 5-month-old white male had an in-frame deletion (E332del) and a 2-month-old black female had a missense mutation (V346I). Both mutations localized to Kir6.1's C-terminus, involved conserved residues and were absent in 400 and 200 ethnic-matched reference alleles respectively. Both cases were negative for mutations in established channelopathic genes. Compared with WT, the pinacidil-activated K(ATP) current was decreased 45% to 68% for Kir6.1-E332del and 40% to 57% for V346I between -20 mV and 40 mV. CONCLUSIONS Molecular and functional evidence implicated loss-of-function KCNJ8 mutations as a novel pathogenic mechanism in SIDS, possibly by predisposition of a maladaptive cardiac response to systemic metabolic stressors akin to the mouse models of KCNJ8 deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vielen Situationen bekommen Personen beim Lernen neuer Aufgaben in einer ersten Phase Feedback, doch in einer zweiten Phase arbeiten sie ohne Feedback. Bislang gibt es einige Befunde zu der Auswirkung eines Feedbacks auf die unmittelbare Leistung, nicht jedoch auf die mittelfristige Leistung in einer Phase ohne Feedback. Es ist zu erwarten, dass die Form der Leistungsmotivation hier eine entscheidende Rolle spielt. Für Personen, die das Ziel haben, besser zu sein als andere, kann ein negatives Feedback eine Bedrohung des Selbstwertes darstellen und daher demotivieren. Mittelfristig sollte jedoch die Bedrohung des Selbstwertes abnehmen. Daher ist zu erwarten, dass Feedback mittelfristig die Leistung steigert. Für Personen, die das Ziel haben, ihre Kenntnisse zu verbessern, stellt ein negatives Feedback keine Bedrohung des Selbstwertes da. Daher sollte sich Feedback anfänglich positiv auf die Leistung auswirken. Diese Personen lieben jedoch das Gefühl, sich Kenntnisse selbst zu erarbeitet zu haben. Feedback verdirbt den Spass am selbstständigen Explorieren und Lösungen finden. Feedback sollte daher - nach einer anfänglichen Leistungssteigerung- mittelfristig zu einer Verringerung der Leistung führen. Wir zeigen in einer Studie in der Tangram Puzzles gelöst wurden, dass beide Prozesse stattfinden.