22 resultados para FOOD-WEB STRUCTURE
Resumo:
BACKGROUND The majority of radiological reports are lacking a standard structure. Even within a specialized area of radiology, each report has its individual structure with regards to details and order, often containing too much of non-relevant information the referring physician is not interested in. For gathering relevant clinical key parameters in an efficient way or to support long-term therapy monitoring, structured reporting might be advantageous. OBJECTIVE Despite of new technologies in medical information systems, medical reporting is still not dynamic. To improve the quality of communication in radiology reports, a new structured reporting system was developed for abdominal aortic aneurysms (AAA), intended to enhance professional communication by providing the pertinent clinical information in a predefined standard. METHODS Actual state analysis was performed within the departments of radiology and vascular surgery by developing a Technology Acceptance Model. The SWOT (strengths, weaknesses, opportunities, and threats) analysis focused on optimization of the radiology reporting of patients with AAA. Definition of clinical parameters was achieved by interviewing experienced clinicians in radiology and vascular surgery. For evaluation, a focus group (4 radiologists) looked at the reports of 16 patients. The usability and reliability of the method was validated in a real-world test environment in the field of radiology. RESULTS A Web-based application for radiological "structured reporting" (SR) was successfully standardized for AAA. Its organization comprises three main categories: characteristics of pathology and adjacent anatomy, measurements, and additional findings. Using different graphical widgets (eg, drop-down menus) in each category facilitate predefined data entries. Measurement parameters shown in a diagram can be defined for clinical monitoring and be adducted for quick adjudications. Figures for optional use to guide and standardize the reporting are embedded. Analysis of variance shows decreased average time required with SR to obtain a radiological report compared to free-text reporting (P=.0001). Questionnaire responses confirm a high acceptance rate by the user. CONCLUSIONS The new SR system may support efficient radiological reporting for initial diagnosis and follow-up for AAA. Perceived advantages of our SR platform are ease of use, which may lead to more accurate decision support. The new system is open to communicate not only with clinical partners but also with Radiology Information and Hospital Information Systems.
Resumo:
Docetaxel (DCT) is an anticancer drug which acts by disrupting microtubule dynamics in the highly mitotic cancer cells. Thus, this drug has a potential to affect function and organization of tissues exhibiting high cellular turnover. We investigated, in the rabbit, the effects of a single human equivalent dose (6.26mg/kg, i.v.) of DCT on the olfactory mucosa (OM) through light and electron microscopy, morphometry, Ki-67 immunostaining, TUNEL assay and the buried food test for olfactory sensitivity. On post-exposure days (PED) 5 and 10, there was disarrangement of the normal cell layering in the olfactory epithelium (OE), apoptotic death of cells of the OE, Bowman's glands and axon bundles, and the presence (including on PED 3) of blood vessels in the bundle cores. A decrease in bundle diameters, olfactory cell densities and cilia numbers, which was most significant on PED 10 (49.3%, 63.4% and 50%, respectively), was also evident. Surprisingly by PED 15, the OM regained normal morphology. Furthermore, olfactory sensitivity decreased progressively until PED 10 when olfaction was markedly impaired, and with recovery from the impairment by PED 15. These observations show that DCT transiently alters the structure and function of the OM suggesting a high regenerative potential for this tissue.
Resumo:
Ethiopia has for a long time been one of the world’s most food-insecure countries. Efforts by the government and a multitude of sponsors including NGOs have developed an array of institutions and instruments to mitigate the negative impact of production and supply disruptions. Public stockpiles are one such tool, the use of which is rapidly increasing worldwide. This brief field study examines the Ethiopian policies and practice in context, including various instruments operated by farmers, processors and traders. The study finds that the multiple objectives assigned to food reserves as well as the present management structure may not be well-suited at a time of high world market prices and when international food aid is dwindling, and as the international regulatory trade and investment environment remains a matter of unfinished business from a global food security perspective. A comprehensive study of various options for improvements would lay out policy alternatives for public authorities and stakeholders.
Resumo:
As part of the global sheep Hapmap project, 24 individuals from each of seven indigenous Swiss sheep breeds (Bundner Oberländer sheep (BOS), Engadine Red sheep (ERS), Swiss Black-Brown Mountain sheep (SBS), Swiss Mirror sheep (SMS), Swiss White Alpine (SWA) sheep, Valais Blacknose sheep (VBS) and Valais Red sheep (VRS)), were genotyped using Illumina’s Ovine SNP50 BeadChip. In total, 167 animals were subjected to a detailed analysis for genetic diversity using 45 193 informative single nucleotide polymorphisms. The results of the phylogenetic analyses supported the known proximity between populations such as VBS and VRS or SMS and SWA. Average genomic relatedness within a breed was found to be 12 percent (BOS), 5 percent (ERS), 9 percent (SBS), 10 percent (SMS), 9 percent (SWA), 12 percent (VBS) and 20 percent (VRS). Furthermore, genomic relationships between breeds were found for single individuals from SWA and SMS, VRS and VBS as well as VRS and BOS. In addition, seven out of 40 indicated parent–offspring pairs could not be confirmed. These results were further supported by results from the genome-wide population cluster analysis. This study provides a better understanding of fine-scale population structures within and between Swiss sheep breeds. This relevant information will help to increase the conservation activities of the local Swiss sheep breeds.
Resumo:
Conservation and monitoring of forest biodiversity requires reliable information about forest structure and composition at multiple spatial scales. However, detailed data about forest habitat characteristics across large areas are often incomplete due to difficulties associated with field sampling methods. To overcome this limitation we employed a nationally available light detection and ranging (LiDAR) remote sensing dataset to develop variables describing forest landscape structure across a large environmental gradient in Switzerland. Using a model species indicative of structurally rich mountain forests (hazel grouse Bonasa bonasia), we tested the potential of such variables to predict species occurrence and evaluated the additional benefit of LiDAR data when used in combination with traditional, sample plot-based field variables. We calibrated boosted regression trees (BRT) models for both variable sets separately and in combination, and compared the models’ accuracies. While both field-based and LiDAR models performed well, combining the two data sources improved the accuracy of the species’ habitat model. The variables retained from the two datasets held different types of information: field variables mostly quantified food resources and cover in the field and shrub layer, LiDAR variables characterized heterogeneity of vegetation structure which correlated with field variables describing the understory and ground vegetation. When combined with data on forest vegetation composition from field surveys, LiDAR provides valuable complementary information for encompassing species niches more comprehensively. Thus, LiDAR bridges the gap between precise, locally restricted field-data and coarse digital land cover information by reliably identifying habitat structure and quality across large areas.
Resumo:
Background The RCSB Protein Data Bank (PDB) provides public access to experimentally determined 3D-structures of biological macromolecules (proteins, peptides and nucleic acids). While various tools are available to explore the PDB, options to access the global structural diversity of the entire PDB and to perceive relationships between PDB structures remain very limited. Methods A 136-dimensional atom pair 3D-fingerprint for proteins (3DP) counting categorized atom pairs at increasing through-space distances was designed to represent the molecular shape of PDB-entries. Nearest neighbor searches examples were reported exemplifying the ability of 3DP-similarity to identify closely related biomolecules from small peptides to enzyme and large multiprotein complexes such as virus particles. The principle component analysis was used to obtain the visualization of PDB in 3DP-space. Results The 3DP property space groups proteins and protein assemblies according to their 3D-shape similarity, yet shows exquisite ability to distinguish between closely related structures. An interactive website called PDB-Explorer is presented featuring a color-coded interactive map of PDB in 3DP-space. Each pixel of the map contains one or more PDB-entries which are directly visualized as ribbon diagrams when the pixel is selected. The PDB-Explorer website allows performing 3DP-nearest neighbor searches of any PDB-entry or of any structure uploaded as protein-type PDB file. All functionalities on the website are implemented in JavaScript in a platform-independent manner and draw data from a server that is updated daily with the latest PDB additions, ensuring complete and up-to-date coverage. The essentially instantaneous 3DP-similarity search with the PDB-Explorer provides results comparable to those of much slower 3D-alignment algorithms, and automatically clusters proteins from the same superfamilies in tight groups. Conclusion A chemical space classification of PDB based on molecular shape was obtained using a new atom-pair 3D-fingerprint for proteins and implemented in a web-based database exploration tool comprising an interactive color-coded map of the PDB chemical space and a nearest neighbor search tool. The PDB-Explorer website is freely available at www.cheminfo.org/pdbexplorer and represents an unprecedented opportunity to interactively visualize and explore the structural diversity of the PDB.
Resumo:
Governance of food systems is a poorly understood determinant of food security. Much scholarship on food systems governance is non-empirical, while existing research is often case study-based and theoretically and methodologically incommensurable. This frustrates aggregation of evidence and generalisation. We undertook a systematic review of methods used in food systems governance research with a view to identifying a core set of indicators for future research. We gathered literature through a structured consultation and sampling from recent reviews. Indicators were identified and classified according to the levels and sectors they investigate. We found a concentration of indicators in food production at local to national levels and a sparseness in distribution and consumption. Unsurprisingly, many indicators of institutional structure were found, while agency-related indicators are moderately represented. We call for piloting and validation of these indicators and for methodological development to fill gaps identified. These efforts are expected to support a more consolidated future evidence base and eventual meta-analysis.