25 resultados para FLUORIDE PEROVSKITES
Resumo:
This in vitro study investigated the erosion-inhibiting properties of dental rinses during erosion in the presence of the salivary pellicle. The erosion inhibition by a Sn/F containing dental rinse (800 ppm Sn2+, 500 ppm F –, pH = 4.5) was compared with a fluoridated solution (500 ppm F –, pH = 4.5) and water(control). Calcium release and enamel softening were significantly reduced among enamel samples exposed to the Sn/F rinse (group SF)compared to those treated with the fluoride solution (group F) and the control (p 0.05). SEM showed slightly etched enamel interfaces in group SF, whereas the erosion was more pronounced in group F and even more severe in the control group. In conclusion, the Sn/F combination provided the best inhibition of erosion among tested solutions. This study demonstrates the application of different analytical tools for comparative erosion quantification.A strong correlation (r2 ≥ 0.783) was shown between calcium release and enamel softening during demineralization.
Resumo:
The aims were to investigate the effect of monoalkyl phosphates (MAPs) and fluoride on dissolution rate of native and saliva-coated hydroxyapatite (HA). Fluoride at 300 mg/l (as NaF) inhibited dissolution of native HA by 12%, while potassium and sodium dodecyl phosphates (PDP, SDP), at 0.1% or higher, inhibited dissolution by 26-34%. MAPs, but not fluoride, also showed persistence of action. MAPs at 0.5% and fluoride at 300 mg/l were then tested separately against HA pre-treated with human saliva for 2 or 18 h. Agents were applied with brushing to half the specimens, and without brushing to the other half. In control (water-treated) specimens, pre-treatment of HA with human saliva reduced dissolution rate on average by 41% (2 h) and 63% (18 h). Brushing did not have a statistically significant effect on dissolution rate of saliva-coated specimens. In brushed specimens, fluoride significantly increased the inhibition due to 2- or 18-hour saliva pre-treatment. It is hypothesised that brushing partially removes the salivary film and allows KOH-soluble calcium fluoride formation at the surfaces of HA particles. Inhibition was reduced by PDP in 2-hour/non-brushed specimens and in 18-hour/brushed specimens. PDP did not affect dissolution rates in the remaining groups and SDP did not affect dissolution rate in any group. Possible reasons for these variable results are discussed. The experiments show that pre-treatment with saliva can significantly modify results of tests on potential anti-erosive agents and it is recommended that saliva pre-treatment should be a routine part of testing such agents.
Resumo:
OBJECTIVES To evaluate the effect of biannual fluoride varnish applications in preschool children as an adjunct to school-based oral health promotion and supervised tooth brushing with 1000ppm fluoride toothpaste. METHODS 424 preschool children, 2-5 year of age, from 10 different pre schools in Athens were invited to this double-blind randomized controlled trial and 328 children completed the 2-year programme. All children received oral health education with hygiene instructions twice yearly and attended supervised tooth brushing once daily. The test group was treated with fluoride varnish (0.9% diflurosilane) biannually while the control group had placebo applications. The primary endpoints were caries prevalence and increment; secondary outcomes were gingival health, mutans streptococci growth and salivary buffer capacity. RESULTS The groups were balanced at baseline and no significant differences in caries prevalence or increment were displayed between the groups after 1 and 2 years, respectively. There was a reduced number of new pre-cavitated enamel lesions during the second year of the study (p=0.05) but the decrease was not statistically significant. The secondary endpoints were unaffected by the varnish treatments. CONCLUSIONS Under the present conditions, biannual fluoride varnish applications in preschool children did not show significant caries-preventive benefits when provided as an adjunct to school-based supervised tooth brushing with 1000ppm fluoride toothpaste. CLINICAL SIGNIFICANCE In community based, caries prevention programmes, for high caries risk preschool children, a fluoride varnish may add little to caries prevention, when 1000ppm fluoride toothpaste is used daily.
Resumo:
OBJECTIVES The aim of this study was to assess the preventive effect of a fluoride-, stannous- and chitosan-containing (F/Sn/chitosan-) toothpaste (TP) on initial enamel erosion and abrasion. METHODS In total, 150 human premolar enamel specimens were ground, polished and divided into 5 toothpaste/rinse groups (n=30): (G1) placebo-TP/tap water, (G2) sodium fluoride (NaF-) TP/tap water, (G3) F/Sn/chitosan-TP/tap water, (G4) F/Sn/chitosan-TP/Sn-rinse, (G5) NaF-TP/NaF-rinse. The 8-day erosion-abrasion cyclic treatment (one cycle/day) consisted of incubating the samples in artificial saliva (30min), then submitting the samples to toothbrush abrasion (2min incubation in toothpaste slurry; brushing with 20 toothbrush strokes) and rinsing (2min; 10ml) with the respective solution: tap water (G1-G3), Sn-rinse (G4) or NaF-rinse (G5). Afterwards, the samples were submitted to erosion (2min; 30ml 1% citric acid, pH=3.6). Surface microhardness (SMH) was measured initially and after every abrasion and erosion treatment. Enamel substance loss was calculated after each abrasion. Non-parametric ANOVA followed by Wilcoxon rank tests were used for analysis. RESULTS G1 presented the greatest SMH decrease, while G4 presented the least SMH decrease (p<0.001). G3 had a similar SMH decrease to G2 and G5. Substance loss was significantly lower in G4 than all other groups (p<0.05), closely followed by G3. Both G2 and G5 showed similar calculated enamel substance loss to G1. CONCLUSION The treatment with F/Sn/chitosan-TP and tap water provided a similar SMH decrease to both NaF-TP groups, but significantly lower substance loss. F/Sn/Chitosan-TP and Sn-rinse showed a better preventive effect, which promoted less SMH decrease and reduced substance loss. CLINICAL SIGNIFICANCE The toothpaste containing fluoride, stannous and chitosan shows promising results in reducing substance loss from erosion and abrasion. The combination of this toothpaste with the stannous-containing rinse showed even better prevention against erosion-abrasion.
Resumo:
Fluorides are used in dental care due to their beneficial effect in tooth enamel de-/remineralization cycles. To achieve a desired constant supply of soluble fluorides in the oral cavity, different approaches have been followed. Here we present results on the preparation of CaF2 particles and their characterization with respect to a potential application as enamel associated fluoride releasing reservoirs. CaF2 particles were synthesized by precipitation from soluble NaF and CaCl2 salt solutions of defined concentrations and their morphology analyzed by scanning electron microscopy. CaF2 particles with defined sizes and shapes could be synthesized by adjusting the concentrations of the precursor salt solutions. Such particles interacted with enamel surfaces when applied at fluoride concentrations correlating to typical dental care products. Fluoride release from the synthesized CaF2 particles was observed to be largely influenced by the concentration of phosphate in the solution. Physiological solutions with phosphate concentration similar to saliva (3.5 mM) reduced the fluoride release from pure CaF2 particles by a factor of 10-20 × as compared to phosphate free buffer solutions. Fluoride release was even lower in human saliva. The fluoride release could be increased by the addition of phosphate in substoichiometric amounts during CaF2 particle synthesis. The presented results demonstrate that the morphology and fluoride release characteristics of CaF2 particles can be tuned and provide evidence of the suitability of synthetic CaF2 particles as enamel associated fluoride reservoirs.
Resumo:
The aims of this study were (1) to assess the amount of fluoride (F) released from varnishes containing calcium glycerophosphate (CaGP) and (2) to assess the effect of the experimental varnishes on in vitro demineralization. Six test groups using 5 varnishes: base varnish (no active ingredients); Duraphat® (2.26% NaF); Duofluorid® (5.63% NaF/CaF2); experimental varnish 1 (1% CaGP/5.63% NaF/CaF2); experimental varnish 2 (5% CaGP/5.63% NaF/CaF2); and no varnish were set up. In stage 1, 60 acrylic blocks were randomly distributed into 6 groups (n = 10). Then 300 µg of each varnish was applied to each block. The blocks were immersed in deionized water, which was changed after 1, 8, 12, 24, 48 and 72 hours. Fluoride concentration in the water was analyzed using a fluoride electrode. In stage 2, 60 bovine enamel samples were distributed into 6 groups (n = 10), and treated with 300 µg of the respective varnish. After 6 h the varnish was removed and the samples were subjected to a 7-day in vitro pH cycle (6 h demineralization/18 h remineralization per day). The demineralization was measured using surface hardness. The results showed that both experimental varnishes released more fluoride than Duofluorid® and Duraphat® (p < 0.05), but Duraphat® showed the best preventive effect by decreasing enamel hardness loss (p < 0.05). Therefore, we conclude that even though (1) the experimental varnishes containing CaGP released greater amounts of F, (2) they did not increase in the preventive effect against enamel demineralization.
Resumo:
OBJECTIVES Calcium glycerophosphate (CaGP) was added to fluoride varnishes to analyze their preventive effect on initial enamel erosion and fluoride uptake: potassium hydroxide (KOH)-soluble and KOH-insoluble fluoride bound to enamel. MATERIALS AND METHODS This study was carried out in two parts. Part 1: 108 enamel samples were randomly distributed into six varnish groups: base varnish (no active ingredients); Duraphat® (2.26 %NaF); Duofluorid® (5.63 %NaF/CaF2); experimental varnish 1 (1 %CaGP/5.63 %NaF/CaF2); experimental varnish 2 (5 %CaGP/5.63 %NaF/CaF2); and no varnish. Cyclic demineralization (90 s; citric acid, pH = 3.6) and remineralization (4 h) was made once a day, for 3 days. Change in surface microhardness (SMH) was measured. Part 2: 60 enamel samples were cut in half and received no varnish (control) or a layer of varnish: Duraphat®, Duofluorid®, experimental varnishes 1 and 2. Then, KOH-soluble and KOH-insoluble fluoride were analyzed using an electrode. RESULTS After cyclic demineralization, SMH decreased in all samples, but Duraphat® caused less hardness loss. No difference was observed between varnishes containing CaGP and the other varnishes. Similar amounts of KOH-soluble and insoluble fluoride was found in experimental varnish 1 and Duofluorid®, while lower values were found for experimental varnish 2 and Duraphat®. CONCLUSION The addition of CaGP to fluoride varnishes did not increase fluoride bound to enamel and did not enhance their protection against initial enamel erosion. CLINICAL RELEVANCE We observe that the fluoride varnishes containing CaGP do not promote greater amounts of fluoride bound to enamel and that fluoride bound to enamel may not be closely related to erosion prevention.