23 resultados para FINGERPRINTING
Resumo:
Twenty-four Actinobacillus suis isolates obtained from several species of non-porcine mammals were compared to the representative porcine strains, ATCC 15557 (serotype O1) and H89-1173 (serotype O2), by O serotyping, DNA fingerprinting, PCR amplification of apxICA, apxIICA and apxIIICA toxin genes and by rrs (16S rRNA) gene sequencing. Only two strains, both equine, reacted with O1 antiserum while two others, one canine and the other feline, reacted with O2 antiserum. One equine strain reacted weakly with both antisera. No amplification of apx genes was found with the non-porcine O1 or the "not O1/O2" strains but amplification of the apxICA and apxIICA genes was observed with the two O2 strains. In addition, these two O2 strains had both BamHI and BglII fingerprints that were very similar to the porcine O2 reference strain, H89-1173 and rrs gene sequences that were identical to the A. suis reference strain ATCC 15557. Taken together, these data suggest that although many non-porcine A. suis isolates are not A. suis (sensu stricto), some isolates are genotypically as well as phenotypically similar to A. suis.
Resumo:
BACKGROUND/AIM Human lectins translate sugar-encoded signals of cell surface glycoconjugates into biological effects, and this is what is known for the adhesion/growth-regulatory galectins. In addition, the multifunctional members of this group can be intracellular, binding to distinct proteins. The presence of galectins and galectin reactivity were exemplarily studied in the present article. MATERIALS AND METHODS We combined immuno- and lectin histochemical monitoring in colon cancer on tissue arrays. RESULTS Intracellular presence of galectins-7 and -9 in colon cancer is detected, extending the previously known set of five expressed lectins this tumor type. The assumed significance of intracellular galectin presence, e.g. for an interplay with BCL2, β-catenin, oncogenic KRAS or synexin, is underscored by respective staining with labeled galectin-3. Statistical significance was obtained for galectin-3 staining with respect to tumor differentiation (p=0.0376), lymph node metastasis (p=0.0069) and lymphatic invasion (p=0.0156). Survival was correlated to staining, galectin-3 reactivity indicating a favorable prognosis (p=0.0183), albeit not as an independent marker. No correlation to KRAS/BRAF status was detected. CONCLUSION These results encourage further testing of labeled human galectins as probes and immunohistochemical fingerprinting instead of measuring single or few activities, in colon cancer and other tumor types.
Resumo:
16S rRNA genes and transcripts of Acidobacteria were investigated in 57 grassland and forest soils of three different geographic regions. Acidobacteria contributed 9-31% of bacterial 16S rRNA genes whereas the relative abundances of the respective transcripts were 4-16%. The specific cellular 16S rRNA content (determined as molar ratio of rRNA:rRNA genes) ranged between 3 and 80, indicating a low in situ growth rate. Correlations with flagellate numbers, vascular plant diversity and soil respiration suggest that biotic interactions are important determinants of Acidobacteria 16S rRNA transcript abundances in soils. While the phylogenetic composition of Acidobacteria differed significantly between grassland and forest soils, high throughput denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism fingerprinting detected 16S rRNA transcripts of most phylotypes in situ. Partial least squares regression suggested that chemical soil conditions such as pH, total nitrogen, C:N ratio, ammonia concentrations and total phosphorus affect the composition of this active fraction of Acidobacteria. Transcript abundance for individual Acidobacteria phylotypes was found to correlate with particular physicochemical (pH, temperature, nitrogen or phosphorus) and, most notably, biological parameters (respiration rates, abundances of ciliates or amoebae, vascular plant diversity), providing culture-independent evidence for a distinct niche specialization of different Acidobacteria even from the same subdivision.
Resumo:
Multichronometric analyses were performed on samples from a transect in the French-Italian Western Alps crossing nappes derived from the Briançonnais terrane and the Piemonte-Liguria Ocean, in an endeavour to constrain the high-pressure (HP) metamorphism and the retrogression history. 12 samples of white mica were analysed by 39Ar-40Ar stepwise heating, complemented by 2 samples from the Monte Rosa 100 km to the NE and also attributed to the Briançonnais terrane. One Sm-Nd and three Lu-Hf garnet ages from eclogites were also obtained. White mica ages decrease from ca. 300 Ma in the westernmost samples (Zone Houillère), reaching ca. 300 °C during Alpine metamorphism, to < 48 Ma in the internal units to the East, which reached ca. 500 °C during Alpine orogeny. The conventional “thermochronological” interpretation postulates Cretaceous Eo-Alpine HP metamorphism and younger “cooling ages” in the higher-temperature samples. However, Eocene Lu-Hf and Sm-Nd ages from the same samples cannot be interpreted as post-metamorphic cooling ages, which makes a Cretaceous eclogitization untenable. The age date from this transect require instead to replace conventional “thermochronology” by an approach combining age dating with detailed geochemical, petrological and microstructural investigations. Petrology reveals important mineralogical differences along the transect. Samples from the Zone Houillère mostly contain detrital mica. White mica with Si > 6.45 atoms per formula unit becomes more abundant eastward. Across the whole traverse, HP phengitic mica forms the D1 foliation. Syn-D2 mica is Si-poorer and associated with nappe stacking, exhumation, and hydrous retrogression under greenschist facies conditions. D1 phengite is very often corroded, overgrown or intergrown by syn-D2 muscovite. Most importantly, syn-D2 recrystallization is not limited to S2 schistosity domains; microchemical fingerprinting shows that it also can form pseudomorphs after crystals that could be mistaken to have formed during D1 based on microstructural arguments alone. Thereby the Cl concentration in white mica is a useful discriminator, since D2 retrogression was associated with a less saline fluid than eclogitization. Once the petrological stage is set, geochronology is straightforward. All samples contain mixtures of detrital, syn-D1 and syn-D2 mica, and retrogression phases (D3) in greatly varying proportions according to local pressure-temperature-fluid activity-deformation conditions. The correlation of age vs. Cl/K clearly identifies 47 ± 1 Ma as the age of formation of syn-D1 mica along the entire transect, including the Monte Rosa nappe samples. The inferred age of the greenschist-facies low-Si syn-D2 mica generation ranges within 39-43 Ma, with local variations. Coexistence of D1 and D2 ages, and the constancy of non-reset D1 ages along the entire transect, are strong evidence that the D1 white mica ages are very close to formation ages. Volume diffusion of Ar in white mica (activation energy E = 250 kJ/mol; pressure-adjusted diffusion coefficient D’0 < 0.03 cm2 s-1) has a subordinate effect on mineral ages compared to both prograde and retrograde recrystallization in most samples. Eocene Lu-Hf and Sm-Nd garnet ages are prograde and predate the HP peak.
Resumo:
Time-based indoor localization has been investigated for several years but the accuracy of existing solutions is limited by several factors, e.g., imperfect synchronization, signal bandwidth and indoor environment. In this paper, we compare two time-based localization algorithms for narrow-band signals, i.e., multilateration and fingerprinting. First, we develop a new Linear Least Square (LLS) algorithm for Differential Time Difference Of Arrival (DTDOA). Second, fingerprinting is among the most successful approaches used for indoor localization and typically relies on the collection of measurements on signal strength over the area of interest. We propose an alternative by constructing fingerprints of fine-grained time information of the radio signal. We offer comprehensive analytical discussions on the feasibility of the approaches, which are backed up by evaluations in a software defined radio based IEEE 802.15.4 testbed. Our work contributes to research on localization with narrow-band signals. The results show that our proposed DTDOA-based LLS algorithm obviously improves the localization accuracy compared to traditional TDOA-based LLS algorithm but the accuracy is still limited because of the complex indoor environment. Furthermore, we show that time-based fingerprinting is a promising alternative to power-based fingerprinting.
Resumo:
This chapter summarises the metabolomic strategies currently in force used in plant science and describes the methods used. The metabolite profiling and fingerprinting of plant tissues through MS- and/or NMR-based approaches and the subsequent identification of biomarkers is detailed. Strategies for the microisolation and de novo identification of unknown biomarkers are also discussed. The various approaches are illustrated by a metabolomic study of the maize response to herbivory. A review of recent metabolomic studies performed on seed and crop plant tissues involving various analytical strategies is provided.
Resumo:
Indoor positioning has attracted considerable attention for decades due to the increasing demands for location based services. In the past years, although numerous methods have been proposed for indoor positioning, it is still challenging to find a convincing solution that combines high positioning accuracy and ease of deployment. Radio-based indoor positioning has emerged as a dominant method due to its ubiquitousness, especially for WiFi. RSSI (Received Signal Strength Indicator) has been investigated in the area of indoor positioning for decades. However, it is prone to multipath propagation and hence fingerprinting has become the most commonly used method for indoor positioning using RSSI. The drawback of fingerprinting is that it requires intensive labour efforts to calibrate the radio map prior to experiments, which makes the deployment of the positioning system very time consuming. Using time information as another way for radio-based indoor positioning is challenged by time synchronization among anchor nodes and timestamp accuracy. Besides radio-based positioning methods, intensive research has been conducted to make use of inertial sensors for indoor tracking due to the fast developments of smartphones. However, these methods are normally prone to accumulative errors and might not be available for some applications, such as passive positioning. This thesis focuses on network-based indoor positioning and tracking systems, mainly for passive positioning, which does not require the participation of targets in the positioning process. To achieve high positioning accuracy, we work on some information of radio signals from physical-layer processing, such as timestamps and channel information. The contributions in this thesis can be divided into two parts: time-based positioning and channel information based positioning. First, for time-based indoor positioning (especially for narrow-band signals), we address challenges for compensating synchronization offsets among anchor nodes, designing timestamps with high resolution, and developing accurate positioning methods. Second, we work on range-based positioning methods with channel information to passively locate and track WiFi targets. Targeting less efforts for deployment, we work on range-based methods, which require much less calibration efforts than fingerprinting. By designing some novel enhanced methods for both ranging and positioning (including trilateration for stationary targets and particle filter for mobile targets), we are able to locate WiFi targets with high accuracy solely relying on radio signals and our proposed enhanced particle filter significantly outperforms the other commonly used range-based positioning algorithms, e.g., a traditional particle filter, extended Kalman filter and trilateration algorithms. In addition to using radio signals for passive positioning, we propose a second enhanced particle filter for active positioning to fuse inertial sensor and channel information to track indoor targets, which achieves higher tracking accuracy than tracking methods solely relying on either radio signals or inertial sensors.
Resumo:
Mycoplasma bovis is a highly contagious bacterium, which predominantly causes chronic pneumonia, otitis and arthritis in calves and mastitis in adult cattle. In humans, Mycoplasma species have been associated with post-surgical infections. The present study aimed to identify the bacteria associated with three outbreaks of infected seromas after caesarian section in Belgian Blue beef cattle. A total of 10 cases occurred in three herds which were in close proximity of each other and shared the same veterinary practice. M. bovis could be cultured from seroma fluid in five of the six referred animals, mostly in pure culture and was isolated from multiple chronic sites of infection (arthritis and mastitis) as well. DNA fingerprinting of the isolates targeting two insertion sequence elements suggested spread of M. bovis from chronic sites of infection (udder and joints) to the postsurgical seromas. Identical genetic profiles were demonstrated in two animals from two separate farms, suggesting spread between farms. Mortality rate in the referred animals positive for M. bovis in a seroma was 80% (4/5), despite intensive treatment. A massive increase in antimicrobial use was observed in every affected farm. These observations demonstrate involvement of mycoplasmas in outbreaks of postsurgical seromas in cattle.