25 resultados para FINE PARTICULATE MATTER SOURCES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Fine particulate matter originating from traffic correlates with increased morbidity and mortality. An important source of traffic particles is brake wear of cars which contributes up to 20% of the total traffic emissions. The aim of this study was to evaluate potential toxicological effects of human epithelial lung cells exposed to freshly generated brake wear particles. RESULTS: An exposure box was mounted around a car's braking system. Lung cells cultured at the air-liquid interface were then exposed to particles emitted from two typical braking behaviours ("full stop" and "normal deceleration"). The particle size distribution as well as the brake emission components like metals and carbons was measured on-line, and the particles deposited on grids for transmission electron microscopy were counted. The tight junction arrangement was observed by laser scanning microscopy. Cellular responses were assessed by measurement of lactate dehydrogenase (cytotoxicity), by investigating the production of reactive oxidative species and the release of the pro-inflammatory mediator interleukin-8. The tight junction protein occludin density decreased significantly (p < 0.05) with increasing concentrations of metals on the particles (iron, copper and manganese, which were all strongly correlated with each other). Occludin was also negatively correlated with the intensity of reactive oxidative species. The concentrations of interleukin-8 were significantly correlated with increasing organic carbon concentrations. No correlation was observed between occludin and interleukin-8, nor between reactive oxidative species and interleukin-8. CONCLUSION: These findings suggest that the metals on brake wear particles damage tight junctions with a mechanism involving oxidative stress. Brake wear particles also increase pro-inflammatory responses. However, this might be due to another mechanism than via oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiocarbon offers a unique possibility for unambiguous source apportionment of carbonaceous particles due to a direct distinction of non-fossil and fossil carbon. In this work, particulate matter of different size fractions was collected at 4 sites in Switzerland to examine whether fine and coarse carbonaceous particles exhibit different fossil and contemporary sources. Elemental carbon (EC) and organic carbon (OC) as well as water-soluble OC (WSOC) and water-insoluble OC (WINSOC) were separated and determined for subsequent 14C measurement. In general, both fossil and non-fossil fractions in OC and EC were found more abundant in the fine than in the coarse mode. However, a substantial fraction (~20 ± 5%) of fossil EC was found in coarse particles, which could be attributed to traffic-induced non-exhaust emissions. The contribution of biomass burning to coarse-mode EC in winter was relatively high, which is likely associated to the coating of EC with organic and/or inorganic substances emitted from intensive wood burning. Further, fossil OC (i.e. from vehicle emissions) was found to be smaller than non-fossil OC due to the presence of primary biogenic OC and/or growing in size of wood-burning OC particles during aging processes. 14C content in WSOC indicated that the second organic carbon rather stems from non-fossil precursors for all samples. Interestingly, both fossil and non-fossil WINSOC concentrations were found to be higher in fine particles than in coarse particles in winter, which is likely due to primary wood burning emissions and/or secondary formation of WINSOC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During winter 2013, extremely high concentrations (i.e., 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) mass concentrations (24 h samples) were found in four major cities in China including Xi'an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic carbon (OC), 14C and biomass-burning marker measurements using Latin hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. Based on 14C measurements of EC fractions (six samples each city), we found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily polluted days according to particulate matter mass. Despite a significant increase of the absolute mass concentrations of primary emissions from both fossil and non-fossil sources during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction in the increment of carbonaceous aerosols during the haze episode in China.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Particulate matter <10 mum (PM(10)) from fossil fuel combustion is associated with an increased prevalence of respiratory symptoms in children and adolescents. However, the effect of PM(10) on respiratory symptoms in young children is unclear. METHODS: The association between primary PM(10) (particles directly emitted from local sources) and the prevalence and incidence of respiratory symptoms was studied in a random sample cohort of 4400 Leicestershire children aged 1-5 years surveyed in 1998 and again in 2001. Annual exposure to primary PM(10) was calculated for the home address using the Airviro dispersion model and adjusted odds ratios (ORS) and 95% confidence intervals were calculated for each microg/m(3) increase. RESULTS: Exposure to primary PM(10) was associated with the prevalence of cough without a cold in both 1998 and 2001, with adjusted ORs of 1.21 (1.07 to 1.38) and 1.56 (1.32 to 1.84) respectively. For night time cough the ORs were 1.06 (0.94 to 1.19) and 1.25 (1.06 to 1.47), and for current wheeze 0.99 (0.88 to 1.12) and 1.28 (1.04 to 1.58), respectively. There was also an association between primary PM(10) and new onset symptoms. The ORs for incident symptoms were 1.62 (1.31 to 2.00) for cough without a cold and 1.42 (1.02 to 1.97) for wheeze. CONCLUSION: In young children there was a consistent association between locally generated primary PM(10) and the prevalence and incidence of cough without a cold and the incidence of wheeze which was independent of potential confounders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycyclic aromatic compounds (PACs) in air particulate matter contribute considerably to the health risk of air pollution. The objectives of this study were to assess the occurrence and variation in concentrations and sources of PM2.5-bound PACs [Oxygenated PAHs (OPAHs), nitro-PAHs and parent-PAHs] sampled from the atmosphere of a typical Chinese megacity (Xi'an), to study the influence of meteorological conditions on PACs and to estimate the lifetime excess cancer risk to the residents of Xi'an (from inhalation of PM2.5-bound PACs). To achieve these objectives, we sampled 24-h PM2.5 aerosols (once in every 6 days, from 5 July 2008 to 8 August 2009) from the atmosphere of Xi'an and measured the concentrations of PACs in them. The PM2.5-bound concentrations of Σcarbonyl-OPAHs, ∑ hydroxyl + carboxyl-OPAHs, Σnitro-PAHs and Σalkyl + parent-PAHs ranged between 5–22, 0.2–13, 0.3–7, and 7–387 ng m− 3, respectively, being markedly higher than in most western cities. This represented a range of 0.01–0.4% and 0.002–0.06% of the mass of organic C in PM2.5 and the total mass of PM2.5, respectively. The sums of the concentrations of each compound group had winter-to-summer ratios ranging from 3 to 8 and most individual OPAHs and nitro-PAHs had higher concentrations in winter than in summer, suggesting a dominant influence of emissions from household heating and winter meteorological conditions. Ambient temperature, air pressure, and wind speed explained a large part of the temporal variation in PACs concentrations. The lifetime excess cancer risk from inhalation (attributable to selected PAHs and nitro-PAHs) was six fold higher in winter (averaging 1450 persons per million residents of Xi'an) than in summer. Our results call for the development of emission control measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiocarbon analysis of the carbonaceous aerosol allows an apportionment of fossil and non-fossil sources of airborne particulate matter (PM). A chemical separation of total carbon (TC) into its subfractions organic carbon (OC) and elemental carbon (EC) refines this powerful technique, as OC and EC originate from different sources and undergo different processes in the atmosphere. Although C-14 analysis of TC, EC, and OC has recently gained increasing attention, interlaboratory quality assurance measures have largely been missing, especially for the isolation of EC and OC. In this work, we present results from an intercomparison of 9 laboratories for C-14 analysis of carbonaceous aerosol samples on quartz fiber filters. Two ambient PM samples and 1 reference material (RM 8785) were provided with representative filter blanks. All laboratories performed C-14 determinations of TC and a subset of isolated EC and OC for isotopic measurement. In general, C-14 measurements of TC and OC agreed acceptably well between the laboratories, i.e. for TC within 0.015-0.025 (FC)-C-14 for the ambient filters and within 0.041 (FC)-C-14 for RM 8785. Due to inhomogeneous filter loading, RM 8785 demonstrated only limited applicability as a reference material for C-14 analysis of carbonaceous aerosols. C-14 analysis of EC revealed a large deviation between the laboratories of 28-79 as a consequence of different separation techniques. This result indicates a need for further discussion on optimal methods of EC isolation for C-14 analysis and a second stage of this intercomparison.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Epidemiological studies show that elevated levels of particulate matter in ambient air are highly correlated with respiratory and cardiovascular diseases. Atmospheric particles originate from a large number of sources and have a highly complex and variable composition. An assessment of their potential health risks and the identification of the most toxic particle sources would require a large number of investigations. Due to ethical and economic reasons, it is desirable to reduce the number of in vivo studies and to develop suitable in vitro systems for the investigation of cell-particle interactions. METHODS We present the design of a new particle deposition chamber in which aerosol particles are deposited onto cell cultures out of a continuous air flow. The chamber allows for a simultaneous exposure of 12 cell cultures. RESULTS Physiological conditions within the deposition chamber can be sustained constantly at 36-37°C and 90-95% relative humidity. Particle deposition within the chamber and especially on the cell cultures was determined in detail, showing that during a deposition time of 2 hr 8.4% (24% relative standard deviation) of particles with a mean diameter of 50 nm [mass median diameter of 100 nm (geometric standard deviation 1.7)] are deposited on the cell cultures, which is equal to 24-34% of all charged particles. The average well-to-well variability of particles deposited simultaneously in the 12 cell cultures during an experiment is 15.6% (24.7% relative standard deviation). CONCLUSIONS This particle deposition chamber is a new in vitro system to investigate realistic cell-particle interactions at physiological conditions, minimizing stress on the cell cultures other than from deposited particles. A detailed knowledge of particle deposition characteristics on the cell cultures allows evaluating reliable dose-response relationships. The compact and portable design of the deposition chamber allows for measurements at any particle sources of interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2:5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 μm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60–91 %) achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved longterm data sets.