21 resultados para FETAL DEVELOPMENT
Resumo:
The network regulating human adrenal development is complex. Studies of patients with adrenal insufficiency due to gene mutations established a central role for transcription factors GLI3, SF1 and DAX1 in the initial steps of adrenal formation. Adrenal differentiation seems to depend on adrenocorticotropic hormone (ACTH) stimulation and signalling, including biosynthesis and action of POMC, PC1, TPIT, MC2R, MRAP and ALADIN, all of which cause adrenocortical hypoplasia when mutated in humans. Studies of knockout mice revealed many more factors involved in adrenal development; however, in contrast to rodents, in humans several of those factors had no adrenal phenotype when mutated (e.g. WT1, WNT4) or, alternatively, human mutations have not (yet) been identified. Tissue profiling of fetal and adult adrenals suggested 69 genes involved in adrenal development. Among them were genes coding for steroidogenic enzymes, transcription and growth factors, signalling molecules, regulators of cell cycle and angiogenesis, and extracellular matrix proteins; however, the exact role of most of them remains to be elucidated.
Resumo:
The first trimester of pregnancy is the time during which organogenesis takes place and tissue patterns and organ systems are established. In the second trimester the fetus undergoes major cellular adaptation and an increase in body size, and in the third trimester organ systems mature ready for extrauterine life. In addition, during that very last period of intrauterine life there is a significant increase in body weight. In contrast to the postnatal endocrine control of growth, where the principal hormones directly influencing growth are growth hormone (GH) and the insulin-like growth factors (IGFs) via the GH-IGF axis, fetal growth throughout gestation is constrained by maternal factors and placental function and is coordinated by growth factors. In general, growth disorders only become apparent postnatally, but they may well be related to fetal life. Thus, fetal growth always needs to be considered in the overall picture of human growth as well as in its metabolic development.
Resumo:
Remarkable advances in ultrasound imaging technology have made it possible to diagnose fetal cardiovascular lesions as early as 12-14 weeks of gestation and to assess their physiological relevance by echocardiography. Moreover, invasive techniques have been developed and refined to relieve significant congenital heart disease (CHD), such as critical aortic and pulmonary stenoses in the pediatric population including neonates. Recognition of the fact that certain CHDs can evolve in utero, and early intervention may improve the outcome by altering the natural history of such conditions has led to the evolution of a new fetal therapy, i.e. fetal cardiac intervention. Two entities, pulmonary valvar atresia and intact ventricular septum (PA/IVS) and hypoplastic left heart syndrome (HLHS), are associated with significant morbidity and mortality even with postnatal surgical therapy. These cases are believed to occur due to restricted blood flow, leading to impaired growth and function of the right or left ventricle. Therefore, several centers started the approach of antenatal intervention with the primary goal of improving the blood flow through the stenotic/atretic valve orifices to allow growth of cardiac structures. Even though centers with a reasonable number of cases seem to have improved the technique and the immediate outcome of fetal interventions, the field is challenged by ethical issues as the intervention puts both the mother and the fetus at risk. Moreover, the perceived benefits of prenatal treatment have to be weighed against steadily improving postnatal surgical and hybrid procedures, which have been shown to reduce morbidity and mortality for these complex heart defects. This review is an attempt to provide a balanced opinion and an update on fetal cardiac intervention.
Resumo:
INTRODUCTION Intrauterine Growth Restriction (IUGR) is a multifactorial disease defined by an inability of the fetus to reach its growth potential. IUGR not only increases the risk of neonatal mortality/morbidity, but also the risk of metabolic syndrome during adulthood. Certain placental proteins have been shown to be implicated in IUGR development, such as proteins from the GH/IGF axis and angiogenesis/apoptosis processes. METHODS Twelve patients with term IUGR pregnancy (birth weight < 10th percentile) and 12 CTRLs were included. mRNA was extracted from the fetal part of the placenta and submitted to a subtraction method (Clontech PCR-Select cDNA Subtraction). RESULTS One candidate gene identified was the long non-coding RNA NEAT1 (nuclear paraspeckle assembly transcript 1). NEAT1 is the core component of a subnuclear structure called paraspeckle. This structure is responsible for the retention of hyperedited mRNAs in the nucleus. Overall, NEAT1 mRNA expression was 4.14 (±1.16)-fold increased in IUGR vs. CTRL placentas (P = 0.009). NEAT1 was exclusively localized in the nuclei of the villous trophoblasts and was expressed in more nuclei and with greater intensity in IUGR placentas than in CTRLs. PSPC1, one of the three main proteins of the paraspeckle, co-localized with NEAT1 in the villous trophoblasts. The expression of NEAT1_2 mRNA, the long isoform of NEAT1, was only modestly increased in IUGR vs. CTRL placentas. DISCUSSION/CONCLUSION The increase in NEAT1 and its co-localization with PSPC1 suggests an increase in paraspeckles in IUGR villous trophoblasts. This could lead to an increased retention of important mRNAs in villous trophoblasts nuclei. Given that the villous trophoblasts are crucial for the barrier function of the placenta, this could in part explain placental dysfunction in idiopathic IUGR fetuses.
Resumo:
Whereas the genetic background of horn growth in cattle has been studied extensively, little is known about the morphological changes in the developing fetal horn bud. In this study we histologically analyzed the development of horn buds of bovine fetuses between ~70 and ~268 days of pregnancy and compared them with biopsies taken from the frontal skin of the same fetuses. In addition we compared the samples from the wild type (horned) fetuses with samples taken from the horn bud region of age-matched genetically hornless (polled) fetuses. In summary, the horn bud with multiple layers of vacuolated keratinocytes is histologically visible early in fetal life already at around day 70 of gestation and can be easily differentiated from the much thinner epidermis of the frontal skin. However, at the gestation day (gd) 212 the epidermis above the horn bud shows a similar morphology to the epidermis of the frontal skin and the outstanding layers of vacuolated keratinocytes have disappeared. Immature hair follicles are seen in the frontal skin at gd 115 whereas hair follicles below the horn bud are not present until gd 155. Interestingly, thick nerve bundles appear in the dermis below the horn bud at gd 115. These nerve fibers grow in size over time and are prominent shortly before birth. Prominent nerve bundles are not present in the frontal skin of wild type or in polled fetuses at any time, indicating that the horn bud is a very sensitive area. The samples from the horn bud region from polled fetuses are histologically equivalent to samples taken from the frontal skin in horned species. This is the first study that presents unique histological data on bovine prenatal horn bud differentiation at different developmental stages which creates knowledge for a better understanding of recent molecular findings.
Resumo:
Fetal antigen 1/delta-like 1 homologue (FA1/dlk1) belongs to the epidermal growth factor superfamily and is considered to be a non-canonical ligand for the Notch receptor. Interactions between Notch and its ligands are crucial for the development of various tissues. Moreover, FA1/dlk1 has been suggested as a potential supplementary marker of dopaminergic neurons. The present study aimed at investigating the distribution of FA1/dlk1-immunoreactive (-ir) cells in the early postnatal and adult midbrain as well as in the nigrostriatal system of 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian adult rats. FA1/dlk1-ir cells were predominantly distributed in the substantia nigra (SN) pars compacta (SNc) and in the ventral tegmental area. Interestingly, the expression of FA1/dlk1 significantly increased in tyrosine hydroxylase (TH)-ir cells during early postnatal development. Co-localization and tracing studies demonstrated that FA1/dlk1-ir cells in the SNc were nigrostriatal dopaminergic neurons, and unilateral 6-OHDA lesions resulted in loss of both FA1/dlk1-ir and TH-ir cells in the SNc. Surprisingly, increased numbers of FA1/dlk1-ir cells (by 70%) were detected in dopamine-depleted striata as compared to unlesioned controls. The higher number of FA1/dlk1-ir cells was likely not due to neurogenesis as colocalization studies for proliferation markers were negative. This suggests that FA1/dlk1 was up-regulated in intrinsic cells in response to the 6-OHDA-mediated loss of FA1/dlk1-expressing SNc dopaminergic neurons and/or due to the stab wound. Our findings hint to a significant role of FA1/dlk1 in the SNc during early postnatal development. The differential expression of FA1/dlk1 in the SNc and the striatum of dopamine-depleted rats could indicate a potential involvement of FA1/dlk1 in the cellular response to the degenerative processes.