33 resultados para F359I POINT MUTATION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Resistance of trypanosomes to melarsoprol is ascribed to reduced uptake of the drug via the P2 nucleoside transporter. The aim of this study was to look for evidence of drug resistance in Trypanosoma brucei gambiense isolates from sleeping sickness patients in Ibba, South Sudan, an area of high melarsoprol failure rate. Eighteen T. b. gambiense stocks were phenotypically and only 10 strains genotypically characterized. In vitro, all isolates were sensitive to melarsoprol, melarsen oxide, and diminazene. Infected mice were cured with a 4 day treatment of 2.5mg/kg bwt melarsoprol, confirming that the isolates were sensitive. The gene that codes for the P2 transporter, TbATI, was amplified by PCR and sequenced. The sequences were almost identical to the TbAT1(sensitive) reference, except for one point mutation, C1384T resulting in the amino acid change proline-462 to serine. None of the described TbAT1(resistant)-type mutations were detected. In a T. b. gambiense sleeping sickness focus where melarsoprol had to be abandoned due to the high incidence of treatment failures, no evidence for drug resistant trypanosomes or for TbAT1(resistant)-type alleles of the P2 transporter could be found. These findings indicate that factors other than drug resistance contribute to melarsoprol treatment failures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of glycan-binding inhibitory receptors, and among them, Siglec-8 is selectively expressed on human eosinophils, basophils, and mast cells. On eosinophils, Siglec-8 engagement induces apoptosis, but its function on mast cells is unknown. OBJECTIVE: We sought to study the effect of Siglec-8 engagement on human mast cell survival and mediator release responses. METHODS: Human mast cells were generated from CD34+ precursors. Apoptosis was studied by using flow cytometry. Mast cell mediator release or human lung airway smooth muscle contraction was initiated by FcepsilonRI cross-linking with or without preincubation with Siglec-8 or control antibodies, and release of mediators was analyzed along with Ca++ flux. RBL-2H3 cells transfected with normal and mutated forms of Siglec-8 were used to study how Siglec-8 engagement alters mediator release. RESULTS: Siglec-8 engagement failed to induce human mast cell apoptosis. However, preincubation with Siglec-8 mAbs significantly (P < .05) inhibited FcepsilonRI-dependent histamine and prostaglandin D(2) release, Ca++ flux, and anti-IgE-evoked contractions of human bronchial rings. In contrast, release of IL-8 was not inhibited. Siglec-8 ligation was also shown to inhibit beta-hexosaminidase release and Ca++ flux triggered through FcepsilonRI in RBL-2H3 cells transfected with full-length human Siglec-8 but not in cells transfected with Siglec-8 containing a tyrosine to phenylalanine point mutation in the membrane-proximal immunoreceptor tyrosine-based inhibitory motif domain. CONCLUSION: These data represent the first reported inhibitory effects of Siglec engagement on human mast cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mutations in CLCN1, the gene encoding the ClC-1 chloride channel in skeletal muscle, lead to myotonia congenita. The effects on the intramembranous channel forming domains have been investigated more than that at the intracellular C-terminus. We have performed a mutation screen involving the whole CLCN1 gene of patients with myotonia congenita by polymerase chain reaction (PCR), single-strand conformation polymorphism studies, and sequencing. Two unrelated patients harbored the same homozygous G-to-T mutation on the donor splice site of intron 17. This led to the skipping of exon 17, as evidenced by the reverse transcriptase PCR. When the exon 17-deleted CLCN1 was expressed in Xenopus oocytes, no chloride current was measurable. This function could be restored by coexpression with the wild-type channel. Our data suggest an important role of this C-terminal region and that exon 17 skipping resulting from a homozygous point mutation in CLCN1 can lead to recessive myotonia congenita.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The human immunodeficiency virus type 1 reverse-transcriptase mutation K65R is a single-point mutation that has become more frequent after increased use of tenofovir disoproxil fumarate (TDF). We aimed to identify predictors for the emergence of K65R, using clinical data and genotypic resistance tests from the Swiss HIV Cohort Study. METHODS: A total of 222 patients with genotypic resistance tests performed while receiving treatment with TDF-containing regimens were stratified by detectability of K65R (K65R group, 42 patients; undetected K65R group, 180 patients). Patient characteristics at start of that treatment were analyzed. RESULTS: In an adjusted logistic regression, TDF treatment with nonnucleoside reverse-transcriptase inhibitors and/or didanosine was associated with the emergence of K65R, whereas the presence of any of the thymidine analogue mutations D67N, K70R, T215F, or K219E/Q was protective. The previously undescribed mutational pattern K65R/G190S/Y181C was observed in 6 of 21 patients treated with efavirenz and TDF. Salvage therapy after TDF treatment was started for 36 patients with K65R and for 118 patients from the wild-type group. Proportions of patients attaining human immunodeficiency virus type 1 loads <50 copies/mL after 24 weeks of continuous treatment were similar for the K65R group (44.1%; 95% confidence interval, 27.2%-62.1%) and the wild-type group (51.9%; 95% confidence interval, 42.0%-61.6%). CONCLUSIONS: In settings where thymidine analogue mutations are less likely to be present, such as at start of first-line therapy or after extended treatment interruptions, combinations of TDF with other K65R-inducing components or with efavirenz or nevirapine may carry an enhanced risk of the emergence of K65R. The finding of a distinct mutational pattern selected by treatment with TDF and efavirenz suggests a potential fitness interaction between K65R and nonnucleoside reverse-transcriptase inhibitor-induced mutations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. RESULTS: Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFbeta, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFbeta. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. CONCLUSION: This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plant infections by the soil bacterium Agrobacterium rhizogenes result in neoplastic disease with the formation of hairy roots at the site of infection. Expression of a set of oncogenes residing on the stably integrated T-DNA is responsible for the disease symptoms. Besides the rol (root locus) genes, which are essential for the formation of hairy roots, the open reading frame orf13 mediates cytokinin-like effects, suggesting an interaction with hormone signaling pathways. Here we show that ORF13 induced ectopic expression of KNOX (KNOTTED1-like homeobox) class transcription factors, as well as of several genes involved in cell cycle control in tomato (Lycopersicon esculentum). ORF13 has a retinoblastoma (RB)-binding motif and interacted with maize (Zea mays) RB in vitro, whereas ORF13, bearing a point mutation in the RB-binding motif (ORF13*), did not. Increased cell divisions in the vegetative shoot apical meristem and accelerated formation of leaf primordia were observed in plants expressing orf13, whereas the expression of orf13* had no influence on cell division rates in the shoot apical meristem, suggesting a role of RB in the regulation of the cell cycle in meristematic tissues. On the other hand, ectopic expression of LeT6 was not dependent on a functional RB-binding motif. Hormone homeostasis was only altered in explants of leaves, whereas in the root no effects were observed. We suggest that ORF13 confers meristematic competence to cells infected by A. rhizogenes by inducing the expression of KNOX genes and promotes the transition of infected cells from the G1 to the S phase by binding to RB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cataract is a known condition leading to opacification of the eye lens causing partial or total blindness. Mutations are known to cause autosomal dominant or recessive inherited forms of cataracts in humans, mice, rats, guinea pigs and dogs. The use of large-sized animal models instead of those using mice for the study of this condition has been discussed due to the small size of rodent lenses. Four juvenile-onset cases of bilateral incomplete immature nuclear cataract were recently observed in Romagnola cattle. Pedigree analysis suggested a monogenic autosomal recessive inheritance. In addition to the cataract, one of the cases displayed abnormal head movements. Genome-wide association and homozygosity mapping and subsequent whole genome sequencing of a single case identified two perfectly associated sequence variants in a critical interval of 7.2 Mb on cattle chromosome 28: a missense point mutation located in an uncharacterized locus and an 855 bp deletion across the exon 19/intron 19 border of the bovine nidogen 1 (NID1) gene (c.3579_3604+829del). RT-PCR showed that NID1 is expressed in bovine lenses while the transcript of the second locus was absent. The NID1 deletion leads to the skipping of exon 19 during transcription and is therefore predicted to cause a frameshift and premature stop codon (p.1164fs27X). The truncated protein lacks a C-terminal domain essential for binding with matrix assembly complexes. Nidogen 1 deficient mice show neurological abnormalities and highly irregular crystal lens alterations. This study adds NID1 to the list of candidate genes for inherited cataract in humans and is the first report of a naturally occurring mutation leading to non-syndromic catarct in cattle provides a potential large animal model for human cataract.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Listeria (L.) monocytogenes is an environmental bacterium that may become an intracellular pathogen upon ingestion to cause gastroenteritis, septicaemia, abortions, and/or fatal infections of the central nervous system. We here describe a L. monocytogenes field strain (JF5171) isolated from a bovine placenta in the context of abortion, which exhibited attenuation in bovine brain-slice cultures. The whole genome of strain JF5171 was sequenced, and the invasion, replication, and intercellular spread of JF5171 were further analyzed by quantification of colony forming units and immunofluorescence studies. Phospholipase and hemolysis activity of JF5171 were also quantified along with transcription levels of actA, hly and prfA. The data obtained were compared to those of the widely used L. monocytogenes reference strain, EGD-e. JF5171 exhibited reduced replication and lower levels of phospholipase and hemolysis activity. Invasion and cell-to-cell spread was strongly decreased compared to EGD-e, and actin polymerization was absent. A frame shift deletion was identified in the JF5171 coding region of the major regulator for virulence, prfA. This resulted in a truncated C-terminus sequence (WEN* vs. WGKLN*). In addition, a point mutation resulted in a lysine to arginine substitution at amino acid position 197. Complementation with prfA from EGD-e and with (EGD-e) prfA-K197N increased the replication and spread efficiency of JF5171. In contrast, complementation with the truncated version of prfA had no effect. Taken together, these results suggest that the truncated C-terminus of prfA considerably contributes to the strongly attenuated phenotype observed in vitro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four related cows showed hairless streaks on various parts of the body with no correlation to the pigmentation pattern. The stripes occurred in a consistent pattern resembling the lines of Blaschko. The non-syndromic hairlessness phenotype observed occurred across three generations of a single family and was compatible with an X-linked mode of inheritance. Linkage analysis and subsequent whole genome sequencing of one affected female identified two perfectly associated non-synonymous sequence variants in the critical interval on bovine chromosome X. Both variants occurred in complete linkage disequilibrium and were absent in more than 3900 controls. An ERCC6L missense mutation was predicted to cause an amino acid substitution of a non-conserved residue. Analysis in mice showed no specific Ercc6l expression pattern related to hair follicle development and therefore ERCC6L was not considered as causative gene. A point mutation at the 5'-splice junction of exon 5 of the TSR2, 20S rRNA accumulation, homolog (S. cerevisiae), gene led to the production of two mutant transcripts, both of which contain a frameshift and generate a premature stop codon predicted to truncate approximately 25% of the protein. Interestingly, in addition to the presence of both physiological TSR2 transcripts, the two mutant transcripts were predominantly detected in the hairless skin of the affected cows. Immunohistochemistry, using an antibody against the N-terminal part of the bovine protein demonstrated the specific expression of the TSR2 protein in the skin and the hair of the affected and the control cows as well as in bovine fetal skin and hair. The RNA hybridization in situ showed that Tsr2 was expressed in pre- and post-natal phases of hair follicle development in mice. Mammalian TSR2 proteins are highly conserved and are known to be broadly expressed, but their precise in vivo functions are poorly understood. Thus, by dissecting a naturally occurring mutation in a domestic animal species, we identified TSR2 as a regulator of hair follicle development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Lethal chondrodysplasia (bulldog syndrome) is a well-known congenital syndrome in cattle and occurs sporadically in many breeds. In 2015, it was noticed that about 12 % of the offspring of the phenotypically normal Danish Holstein sire VH Cadiz Captivo showed chondrodysplasia resembling previously reported bulldog calves. Pedigree analysis of affected calves did not display obvious inbreeding to a common ancestor, suggesting the causative allele was not a rare recessive. The normal phenotype of the sire suggested a dominant inheritance with incomplete penetrance or a mosaic mutation. Results Three malformed calves were examined by necropsy, histopathology, radiology, and computed tomography scanning. These calves were morphologically similar and displayed severe disproportionate dwarfism and reduced body weight. The syndrome was characterized by shortening and compression of the body due to reduced length of the spine and the long bones of the limbs. The vicerocranium had severe dysplasia and palatoschisis. The bones had small irregular diaphyses and enlarged epiphyses consisting only of chondroid tissue. The sire and a total of four affected half-sib offspring and their dams were genotyped with the BovineHD SNP array to map the defect in the genome. Significant genetic linkage was obtained for several regions of the bovine genome including chromosome 5 where whole genome sequencing of an affected calf revealed a COL2A1 point mutation (g.32473300 G > A). This private sequence variant was predicted to affect splicing as it altered the conserved splice donor sequence GT at the 5’-end of COL2A1 intron 36, which was changed to AT. All five available cases carried the mutant allele in heterozygous state and all five dams were homozygous wild type. The sire VH Cadiz Captivo was shown to be a gonadal and somatic mosaic as assessed by the presence of the mutant allele at levels of about 5 % in peripheral blood and 15 % in semen. Conclusions The phenotypic and genetic findings are comparable to a previously reported COL2A1 missense mutation underlying lethal chondrodysplasia in the offspring of a mosaic French Holstein sire (Igale Masc). The identified independent spontaneous splice site variant in COL2A1 most likely caused chondrodysplasia and must have occurred during the early foetal development of the sire. This study provides a first example of a dominant COL2A1 splice site variant as candidate causal mutation of a severe lethal chondrodysplasia phenotype. Germline mosaicism is a relatively frequent mechanism in the origin of genetic disorders and explains the prevalence of a certain fraction of affected offspring. Paternal dominant de novo mutations are a risk in cattle breeding, especially because the ratio of defective offspring may be very high and be associated with significant animal welfare problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Brugada syndrome (BS) is an inherited electrical cardiac disorder characterized by right bundle branch block pattern and ST segment elevation in leads V1 to V3 on surface electrocardiogram that can potentially lead to malignant ventricular tachycardia and sudden cardiac death. About 20% of patients have mutations in the only so far identified gene, SCN5A, which encodes the alpha-subunit of the human cardiac voltage-dependent sodium channel (hNa(v)1.5). Fever has been shown to unmask or trigger the BS phenotype, but the associated molecular and the biophysical mechanisms are still poorly understood. We report on the identification and biophysical characterization of a novel heterozygous missense mutation in SCN5A, F1344S, in a 42-year-old male patient showing the BS phenotype leading to ventricular fibrillation during fever. METHODS: The mutation was reproduced in vitro using site-directed mutagenesis and characterized using the patch clamp technique in the whole-cell configuration. RESULTS: The biophysical characterization of the channels carrying the F1344S mutation revealed a 10 mV mid-point shift of the G/V curve toward more positive voltages during activation. Raising the temperature to 40.5 degrees C further shifted the mid-point activation by 18 mV and significantly changed the slope factor in Na(v)1.5/F1344S mutant channels from -6.49 to -10.27 mV. CONCLUSIONS: Our findings indicate for the first time that the shift in activation and change in the slope factor at a higher temperature mimicking fever could reduce sodium currents' amplitude and trigger the manifestation of the BS phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ischemic colitis results from insufficient blood supply to the large intestine and is often associated with hypercoagulable states. The condition comprises a wide range presenting with mild to fulminant forms. Diagnosis remains difficult because these patients may present with non-specific abdominal symptoms. We report a 51- year-old female patient with known Leiden factor V mutation as well as systemic lupus erythematous along with antiphospholipid syndrome suffering from recurrent ischemic colitis. At admission, the patient complained about abdominal pain, diarrhea and rectal bleeding lasting for 24 hours. Laboratory tests showed an increased C-reactive protein (29.5 mg/dl), while the performed abdominal CT-scan revealed only a dilatation of the descending colon along with a thickening of the bowel wall. Laparotomy was performed showing an ischemic colon and massive peritonitis. Histological examination proved the suspected ischemic colitis. Consecutively, an anti-coagulation therapy with coumarin and aspirin 100 was initiated. Up to the time point of a follow up examination no further ischemic events had occurred. This case illustrates well the non-specific clinical presentation of ischemic colitis. A high index of suspicion, recognition of risk factors and a history of non-specific abdominal symptoms should alert the clinicians to the possibility of ischemic disease. Early diagnosis and initiation of anticoagulation therapy or surgical intervention in case of peritonitis are the major goals of therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytoplasmic dynein performs multiple cellular tasks but its regulation remains unclear. The dynein heavy chain has a N-terminal stem that binds to other subunits and a C-terminal motor unit that contains six AAA (ATPase associated with cellular activities) domains and a microtubule-binding site located between AAA4 and AAA5. In Aspergillus nidulans, NUDF (a LIS1 homolog) functions in the dynein pathway, and two nudF6 partial suppressors were mapped to the nudA dynein heavy chain locus. Here we identified these two mutations. The nudAL1098F mutation resides in the stem region, and nudAR3086C is in the end of AAA4. These mutations partially suppress the phenotype of nudF deletion but do not suppress the phenotype exhibited by mutants of dynein intermediate chain and Arp1. Surprisingly, the stronger DeltanudF suppressor, nudAR3086C, causes an obvious decrease in the basal level of dynein's ATPase activity and an increase in dynein's distribution along microtubules. Thus, suppression of the DeltanudF phenotype may result from mechanisms other than simply the enhancement of dynein's ATPase activity. The fact that a mutation in the end of AAA4 negatively regulates dynein's ATPase activity but partially compensates for NUDF loss indicates the importance of the AAA4 domain in dynein regulation in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benzimidazoles were the first broad-spectrum anthelmintics and are still in use today against gastro-intestinal nematodes of ruminants such as Haemonchus contortus. Benzimidazoles block the polymerization of nematode microtubules. However, their efficacy is jeopardized by the spread of drug-resistant parasites that carry point mutations in beta-tubulin. Here we use a novel in vitro selection-in vivo propagation protocol to breed drug-resistant H. contortus. After 8 generations of selection with thiabendazole an in vitro resistance factor of 1000 was reached that was also relevant in vivo in infected sheep. The same procedure carried out with ivermectin produced only a moderate resistance phenotype that was not apparent in sheep. Cloning and sequencing of the beta-tubulin genes from the thiabendazole-resistant H. contortus mutants revealed all of the isotype 1 alleles, and part of the isotype 2 alleles, to carry the mutation glutamate(198) to alanine (E198A). An allele-specific PCR was developed, which may be helpful in monitoring the prevalence of alanine(198) encoding alleles in the beta-tubulin isotype 1 gene pool of H. contortus in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND J-wave syndromes have emerged conceptually to encompass the pleiotropic expression of J-point abnormalities including Brugada syndrome (BrS) and early repolarization syndrome (ERS). KCNJ8, which encodes the cardiac K(ATP) Kir6.1 channel, recently has been implicated in ERS following identification of the functionally uncharacterized missense mutation S422L. OBJECTIVE The purpose of this study was to further explore KCNJ8 as a novel susceptibility gene for J-wave syndromes. METHODS Using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing, comprehensive open reading frame/splice site mutational analysis of KCNJ8 was performed in 101 unrelated patients with J-wave syndromes, including 87 with BrS and 14 with ERS. Six hundred healthy individuals were examined to assess the allelic frequency for all variants detected. KCNJ8 mutation(s) was engineered by site-directed mutagenesis and coexpressed heterologously with SUR2A in COS-1 cells. Ion currents were recorded using whole-cell configuration of the patch-clamp technique. RESULTS One BrS case and one ERS case hosted the identical missense mutation S422L, which was reported previously. KCNJ8-S422L involves a highly conserved residue and was absent in 1,200 reference alleles. Both cases were negative for mutations in all known BrS and ERS susceptibility genes. K(ATP) current of the Kir6.1-S422L mutation was increased significantly over the voltage range from 0 to 40 mV compared to Kir6.1-WT channels (n = 16-21; P <.05). CONCLUSION These findings further implicate KCNJ8 as a novel J-wave syndrome susceptibility gene and a marked gain of function in the cardiac K(ATP) Kir6.1 channel secondary to KCNJ8-S422L as a novel pathogenic mechanism for the phenotypic expression of both BrS and ERS.