26 resultados para Expected Utility Model
Resumo:
Stemmatology, or the reconstruction of the transmission history of texts, is a field that stands particularly to gain from digital methods. Many scholars already take stemmatic approaches that rely heavily on computational analysis of the collated text (e.g. Robinson and O’Hara 1996; Salemans 2000; Heikkilä 2005; Windram et al. 2008 among many others). Although there is great value in computationally assisted stemmatology, providing as it does a reproducible result and allowing access to the relevant methodological process in related fields such as evolutionary biology, computational stemmatics is not without its critics. The current state-of-the-art effectively forces scholars to choose between a preconceived judgment of the significance of textual differences (the Lachmannian or neo-Lachmannian approach, and the weighted phylogenetic approach) or to make no judgment at all (the unweighted phylogenetic approach). Some basis for judgment of the significance of variation is sorely needed for medieval text criticism in particular. By this, we mean that there is a need for a statistical empirical profile of the text-genealogical significance of the different sorts of variation in different sorts of medieval texts. The rules that apply to copies of Greek and Latin classics may not apply to copies of medieval Dutch story collections; the practices of copying authoritative texts such as the Bible will most likely have been different from the practices of copying the Lives of local saints and other commonly adapted texts. It is nevertheless imperative that we have a consistent, flexible, and analytically tractable model for capturing these phenomena of transmission. In this article, we present a computational model that captures most of the phenomena of text variation, and a method for analysis of one or more stemma hypotheses against the variation model. We apply this method to three ‘artificial traditions’ (i.e. texts copied under laboratory conditions by scholars to study the properties of text variation) and four genuine medieval traditions whose transmission history is known or deduced in varying degrees. Although our findings are necessarily limited by the small number of texts at our disposal, we demonstrate here some of the wide variety of calculations that can be made using our model. Certain of our results call sharply into question the utility of excluding ‘trivial’ variation such as orthographic and spelling changes from stemmatic analysis.
Resumo:
Study Design. In vitro study to develop an intervertebral disc degeneration (IDD) organ culture model, using coccygeal bovine intervertebral discs (IVDs) and injection of proteolytic enzymes MMP-3, ADAMTS-4 and HTRA1.Objective. This study aimed to develop an in-vitro model of enzyme-mediated IDD to mimic the clinical outcome in humans for investigation of therapeutic treatment options.Summary of Background Data. Bovine IVDs are comparable to human IVDs in terms of cell composition and biomechanical behavior. Researchers injected papain and trypsin into them to create an IDD model with a degenerated nucleus pulposus (NP) area. They achieved macroscopic cavities as well as a loss of glycosaminoglycans (GAGs). However, none of these enzymes are clinically relevant.Methods. Bovine IVDs were harvested maintaining the endplates. Active forms of MMP-3, ADAMTS-4 and HTRA1 were injected at a dose of 10μg/ml each. Phosphate buffered saline (PBS) was injected as a control. Discs were cultured for 8 days and loaded diurnally (day 1 to day 4 with 0.4 MPa for 16 h) and left under free swelling condition from day 4 to day 8 to avoid expected artifacts due to dehydration of the NP. Outcome parameters included disc height, metabolic cell activity, DNA content, glycosaminoglycan (GAG) content, total collagen content, relative gene expression and histological investigation.Results. The mean metabolic cell activity was significantly lower in the NP area of discs injected with ADAMTS-4 compared to the day 0 control discs. Disc height was decreased following injection with HTRA1, and was significantly correlated with changes in GAG/DNA of the NP tissue. Total collagen content tended to be lower in groups injected with ADAMTS4 and MMP-3.Conclusion. MMP-3, ADAMTS-4 and HTRA1 neither provoked visible matrix degradation nor major shifts in gene expression. However, cell activity was significantly reduced and HTRA1 induced loss of disc height which positively correlated with changes in GAG/DNA content. The use of higher doses of these enzymes or a combination thereof may therefore be necessary to induce disc degeneration
Resumo:
Fractures of the keel bone, a bone extending ventrally from the sternum, are a serious health and welfare problem in free range laying hens. Recent findings suggest that a major cause of keel damage within extensive systems is collisions with internal housing structures, though investigative efforts have been hindered by difficulties in examining mechanisms and likely influencing factors at the moment of fracture. The objectives of this study were to develop an ex vivo impact protocol to model bone fracture in hens caused by collision, to assess impact and bird-related factors influencing fracture occurrence and severity, and to identify correlations of mechanical and structural properties between different skeletal sites. We induced keel bone fractures in euthanized hens using a drop-weight impact tester able to generate a range of impact energies, producing fractures that replicate those commonly found in commercial settings. The results demonstrated that impact energies of a similar order to those expected in normal housing were able to produce fractures, and that greater collision energies resulted in an increased likelihood of fractures and of greater severity. Relationships were also seen with keel's lateral surface bone mineral density, and the peak reactive force (strength) at the base of the manubrial spine. Correlations were also identified between the keel and long bones with respect to both strength and bone mineral density. This is the first study able to relate impact and bone characteristics with keel bone fracture at the moment of collision. Greater understanding of these relationships will provide means to reduce levels of breakage and severity in commercial systems.
Resumo:
Water-conducting faults and fractures were studied in the granite-hosted A¨ spo¨ Hard Rock Laboratory (SE Sweden). On a scale of decametres and larger, steeply dipping faults dominate and contain a variety of different fault rocks (mylonites, cataclasites, fault gouges). On a smaller scale, somewhat less regular fracture patterns were found. Conceptual models of the fault and fracture geometries and of the properties of rock types adjacent to fractures were derived and used as input for the modelling of in situ dipole tracer tests that were conducted in the framework of the Tracer Retention Understanding Experiment (TRUE-1) on a scale of metres. After the identification of all relevant transport and retardation processes, blind predictions of the breakthroughs of conservative to moderately sorbing tracers were calculated and then compared with the experimental data. This paper provides the geological basis and model calibration, while the predictive and inverse modelling work is the topic of the companion paper [J. Contam. Hydrol. 61 (2003) 175]. The TRUE-1 experimental volume is highly fractured and contains the same types of fault rocks and alterations as on the decametric scale. The experimental flow field was modelled on the basis of a 2D-streamtube formalism with an underlying homogeneous and isotropic transmissivity field. Tracer transport was modelled using the dual porosity medium approach, which is linked to the flow model by the flow porosity. Given the substantial pumping rates in the extraction borehole, the transport domain has a maximum width of a few centimetres only. It is concluded that both the uncertainty with regard to the length of individual fractures and the detailed geometry of the network along the flowpath between injection and extraction boreholes are not critical because flow is largely one-dimensional, whether through a single fracture or a network. Process identification and model calibration were based on a single uranine breakthrough (test PDT3), which clearly showed that matrix diffusion had to be included in the model even over the short experimental time scales, evidenced by a characteristic shape of the trailing edge of the breakthrough curve. Using the geological information and therefore considering limited matrix diffusion into a thin fault gouge horizon resulted in a good fit to the experiment. On the other hand, fresh granite was found not to interact noticeably with the tracers over the time scales of the experiments. While fracture-filling gouge materials are very efficient in retarding tracers over short periods of time (hours–days), their volume is very small and, with time progressing, retardation will be dominated by altered wall rock and, finally, by fresh granite. In such rocks, both porosity (and therefore the effective diffusion coefficient) and sorption Kds are more than one order of magnitude smaller compared to fault gouge, thus indicating that long-term retardation is expected to occur but to be less pronounced.
Resumo:
Mountain vegetation is strongly affected by temperature and is expected to shift upwards with climate change. Dynamic vegetation models are often used to assess the impact of climate on vegetation and model output can be compared with paleobotanical data as a reality check. Recent paleoecological studies have revealed regional variation in the upward shift of timberlines in the Northern and Central European Alps in response to rapid warming at the Younger Dryas/Preboreal transition ca. 11700years ago, probably caused by a climatic gradient across the Alps. This contrasts with previous studies that successfully simulated the early Holocene afforestation in the (warmer) Central Alps with a chironomid-inferred temperature reconstruction from the (colder) Northern Alps. We use LandClim, a dynamic landscape vegetation model to simulate mountain forests under different temperature, soil and precipitation scenarios around Iffigsee (2065m a.s.l.) a lake in the Northwestern Swiss Alps, and compare the model output with the paleobotanical records. The model clearly overestimates the upward shift of timberline in a climate scenario that applies chironomid-inferred July-temperature anomalies to all months. However, forest establishment at 9800 cal. BP at Iffigsee is successfully simulated with lower moisture availability and monthly temperatures corrected for stronger seasonality during the early Holocene. The model-data comparison reveals a contraction in the realized niche of Abies alba due to the prominent role of anthropogenic disturbance after ca. 5000 cal. BP, which has important implications for species distribution models (SDMs) that rely on equilibrium with climate and niche stability. Under future climate projections, LandClim indicates a rapid upward shift of mountain vegetation belts by ca. 500m and treeline positions of ca. 2500m a.s.l. by the end of this century. Resulting biodiversity losses in the alpine vegetation belt might be mitigated with low-impact pastoralism to preserve species-rich alpine meadows.
Resumo:
Growth codes are a subclass of Rateless codes that have found interesting applications in data dissemination problems. Compared to other Rateless and conventional channel codes, Growth codes show improved intermediate performance which is particularly useful in applications where partial data presents some utility. In this paper, we investigate the asymptotic performance of Growth codes using the Wormald method, which was proposed for studying the Peeling Decoder of LDPC and LDGM codes. Compared to previous works, the Wormald differential equations are set on nodes' perspective which enables a numerical solution to the computation of the expected asymptotic decoding performance of Growth codes. Our framework is appropriate for any class of Rateless codes that does not include a precoding step. We further study the performance of Growth codes with moderate and large size codeblocks through simulations and we use the generalized logistic function to model the decoding probability. We then exploit the decoding probability model in an illustrative application of Growth codes to error resilient video transmission. The video transmission problem is cast as a joint source and channel rate allocation problem that is shown to be convex with respect to the channel rate. This illustrative application permits to highlight the main advantage of Growth codes, namely improved performance in the intermediate loss region.
Resumo:
A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7 TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb(-1) to 4.8 fb(-1). Higgs boson decays into oppositely-charged in muon or tau lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, phi, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters m(A) and tan beta in the m(h)(max) scenario for m(A) in the range of 90 GeV to 500 GeV.
Resumo:
A search for the neutral Higgs bosons predicted by the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is performed on data from proton-proton collisions at a centre-of-mass energy of 8 TeV collected with the ATLAS detector at the Large Hadron Collider. The samples used for this search were collected in 2012 and correspond to integrated luminosities in the range 19.5-20.3 fb−1. The MSSM Higgs bosons are searched for in the τ τ final state. No significant excess over the expected background is observed, and exclusion limits are derived for the production cross section times branching fraction of a scalar particle as a function of its mass. The results are also interpreted in the MSSM parameter space for various benchmark scenarios.
Resumo:
We investigate the transition from unitary to dissipative dynamics in the relativistic O(N) vector model with the λ(φ2)2 interaction using the nonperturbative functional renormalization group in the real-time formalism. In thermal equilibrium, the theory is characterized by two scales, the interaction range for coherent scattering of particles and the mean free path determined by the rate of incoherent collisions with excitations in the thermal medium. Their competition determines the renormalization group flow and the effective dynamics of the model. Here we quantify the dynamic properties of the model in terms of the scale-dependent dynamic critical exponent z in the limit of large temperatures and in 2≤d≤4 spatial dimensions. We contrast our results to the behavior expected at vanishing temperature and address the question of the appropriate dynamic universality class for the given microscopic theory.
Resumo:
BACKGROUND Predicting long-term survival after admission to hospital is helpful for clinical, administrative and research purposes. The Hospital-patient One-year Mortality Risk (HOMR) model was derived and internally validated to predict the risk of death within 1 year after admission. We conducted an external validation of the model in a large multicentre study. METHODS We used administrative data for all nonpsychiatric admissions of adult patients to hospitals in the provinces of Ontario (2003-2010) and Alberta (2011-2012), and to the Brigham and Women's Hospital in Boston (2010-2012) to calculate each patient's HOMR score at admission. The HOMR score is based on a set of parameters that captures patient demographics, health burden and severity of acute illness. We determined patient status (alive or dead) 1 year after admission using population-based registries. RESULTS The 3 validation cohorts (n = 2,862,996 in Ontario, 210 595 in Alberta and 66,683 in Boston) were distinct from each other and from the derivation cohort. The overall risk of death within 1 year after admission was 8.7% (95% confidence interval [CI] 8.7% to 8.8%). The HOMR score was strongly and significantly associated with risk of death in all populations and was highly discriminative, with a C statistic ranging from 0.89 (95% CI 0.87 to 0.91) to 0.92 (95% CI 0.91 to 0.92). Observed and expected outcome risks were similar (median absolute difference in percent dying in 1 yr 0.3%, interquartile range 0.05%-2.5%). INTERPRETATION The HOMR score, calculated using routinely collected administrative data, accurately predicted the risk of death among adult patients within 1 year after admission to hospital for nonpsychiatric indications. Similar performance was seen when the score was used in geographically and temporally diverse populations. The HOMR model can be used for risk adjustment in analyses of health administrative data to predict long-term survival among hospital patients.
Resumo:
Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs' roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population.