31 resultados para Escape from Vehicle.
Resumo:
The release of phosphate (Pi) is an important element in actomyosin function and has been shown to be accelerated by the binding of myosin to actin. To provide information about the structural elements important for Pi release, possible escape pathways from various isolated myosin II structures have been determined by molecular dynamics simulations designed for studying such slow processes. The residues forming the pathways were identified and their role was evaluated by mutant simulations. Pi release is slow in the pre-powerstroke structure, an important element in preventing the powerstroke prior to actin binding, and is much more rapid for Pi modeled into the post-rigor and rigor-like structures. The previously proposed backdoor route is dominant in the pre-powerstroke and post-rigor states, whereas a different path is most important in the rigor-like state. This finding suggests a mechanism for the actin-activated acceleration of Pi release.
Resumo:
Inhibitors of angiogenesis and radiation induce compensatory changes in the tumor vasculature both during and after cessation of treatment. In numerous preclinical studies, angiogenesis inhibitors were shown to be efficient in the treatment of many pathological conditions, including solid cancers. In most clinical trials, however, this approach turned out to have no significant effect, especially if applied as monotherapy. Recovery of tumors after therapy is a major problem in the management of cancer patients. The mechanisms underlying tumor recovery (or therapy resistance) have not yet been explicitly elucidated. This review deals with the transient switch from sprouting to intussusceptive angiogenesis, which may be an adaptive response of tumor vasculature to cancer therapy that allows the vasculature to maintain its functional properties. Potential candidates for molecular targeting of this angioadaptive mechanism are yet to be elucidated in order to improve the currently poor efficacy of contemporary antiangiogenic therapies.
Resumo:
Eph receptor tyrosine kinases and their ligands (ephrins) have a pivotal role in the homeostasis of many adult organs and are widely expressed in the kidney. Glomerular diseases beginning with mesangiolysis can recover, with podocytes having a critical role in this healing process. We studied here the role of Eph signaling in glomerular disease recovery following mesangiolytic Thy1.1 nephritis in rats. EphB4 and ephrinBs were expressed in healthy glomerular podocytes and were upregulated during Thy1.1 nephritis, with EphB4 strongly phosphorylated around day 9. Treatment with NPV-BHG712, an inhibitor of EphB4 phosphorylation, did not cause glomerular changes in control animals. Nephritic animals treated with vehicle did not have morphological evidence of podocyte injury or loss; however, application of this inhibitor to nephritic rats induced glomerular microaneurysms, podocyte damage, and loss. Prolonged NPV-BHG712 treatment resulted in increased albuminuria and dysregulated mesangial recovery. Additionally, NPV-BHG712 inhibited capillary repair by intussusceptive angiogenesis (an alternative to sprouting angiogenesis), indicating a previously unrecognized role of podocytes in regulating intussusceptive vessel splitting. Thus, our results identify EphB4 signaling as a pathway allowing podocytes to survive transient capillary collapse during glomerular disease.
Resumo:
The host's immune response to hepatitis C virus (HCV) can result in the selection of characteristic mutations (adaptations) that enable the virus to escape this response. The ability of the virus to mutate at these sites is dependent on the incoming virus, the fitness cost incurred by the mutation, and the benefit to the virus in escaping the response. Studies examining viral adaptation in chronic HCV infection have shown that these characteristic immune escape mutations can be observed at the population level as human leukocyte antigen (HLA)-specific viral polymorphisms. We examined 63 individuals with chronic HCV infection who were infected from a single HCV genotype 1b source. Our aim was to determine the extent to which the host's immune pressure affects HCV diversity and the ways in which the sequence of the incoming virus, including preexisting escape mutations, can influence subsequent mutations in recipients and infection outcomes. Conclusion: HCV sequences from these individuals revealed 29 significant associations between specific HLA types within the new hosts and variations within their viruses, which likely represent new viral adaptations. These associations did not overlap with previously reported adaptations for genotypes 1a and 3a and possibly reflected a combination of constraint due to the incoming virus and genetic distance between the strains. However, these sites accounted for only a portion of the sites in which viral diversity was observed in the new hosts. Furthermore, preexisting viral adaptations in the incoming (source) virus likely influenced the outcomes in the new hosts.
Resumo:
Knowledge of the dynamic features of the processes driven by malaria parasites in the spleen is lacking. To gain insight into the function and structure of the spleen in malaria, we have implemented intravital microscopy and magnetic resonance imaging of the mouse spleen in experimental infections with non-lethal (17X) and lethal (17XL) Plasmodium yoelii strains. Noticeably, there was higher parasite accumulation, reduced motility, loss of directionality, increased residence time and altered magnetic resonance only in the spleens of mice infected with 17X. Moreover, these differences were associated with the formation of a strain-specific induced spleen tissue barrier of fibroblastic origin, with red pulp macrophage-clearance evasion and with adherence of infected red blood cells to this barrier. Our data suggest that in this reticulocyte-prone non-lethal rodent malaria model, passage through the spleen is different from what is known in other Plasmodium species and open new avenues for functional/structural studies of this lymphoid organ in malaria.
Resumo:
AIM: Peptide receptor radionuclide therapy using the somatostatin analogue [(177)Lu-DOTA(0),Tyr(3)]octreotate is a convincing treatment modality for metastasized neuroendocrine tumors. Therapeutic doses are administered in 4 cycles with 6-10 week intervals. A high somatostatin receptor density on tumor cells is a prerequisite at every administration to enable effective therapy. In this study, the density of the somatostatin receptor subtype 2 (sst2) was investigated in the rat CA20948 pancreatic tumor model after low dose [(177)Lu-DOTA(0), Tyr(3)]octreotate administration resulting in approximately 20 Gy tumor radiation absorbed dose, whereas 60 Gy is needed to induce complete tumor regression in these and the majority of tumors. METHODS: Sixteen days after inoculation of the CA20948 tumor, male Lewis rats were injected with 185 MBq [(177)Lu-DOTA(0),Tyr(3)]octreotate to initiate a decline in tumor size. Approximately 40 days after injection, tumors re-grew progressively after initial response. Quantification of sst2 expression was performed using in vitro autoradiography on frozen sections of three groups: control (not-treated) tumors, tumors in regression and tumors in re-growth. Histology and proliferation were determined using HE- and anti-Ki-67-staining. RESULTS: The sst2 expression on CA20948 tumor cells decreased significantly after therapy to 5% of control level. However, tumors escaping from therapy showed an up-regulated sst2 level of 2-5 times higher sst2 density compared to control tumors. CONCLUSION: After a suboptimal therapeutic dose of [(177)Lu-DOTA(0),Tyr(3)]octreotate, escape of tumors is likely to occur. Since these cells show an up-regulated sst2 receptor density, a next therapeutic administration of radiolabelled sst2 analogue can be expected to be highly effective.
Resumo:
OBJECTIVES: Membrane-targeted application of complement inhibitors may ameliorate ischemia/reperfusion (I/R) injury by directly targeting damaged cells. We investigated whether Mirococept, a membrane-targeted, myristoylated peptidyl construct derived from complement receptor 1 (CR1) could attenuate I/R injury following acute myocardial infarction in pigs. METHODS: In a closed-chest pig model of acute myocardial infarction, Mirococept, the non-tailed derivative APT154, or vehicle was administered intracoronarily into the area at risk 5 min pre-reperfusion. Infarct size, cardiac function and inflammatory status were evaluated. RESULTS: Mirococept targeted damaged vasculature and myocardium, significantly decreasing infarct size compared to vehicle, whereas APT154 had no effect. Cardioprotection correlated with reduced serum troponin I and was paralleled by attenuated local myocardial complement deposition and tissue factor expression. Myocardial apoptosis (TUNEL-positivity) was also reduced with the use of Mirococept. Local modulation of the pro-inflammatory and pro-coagulant phenotype translated to improved left ventricular end-diastolic pressure, ejection fraction and regional wall motion post-reperfusion. CONCLUSIONS: Local modification of a pro-inflammatory and pro-coagulant environment after regional I/R injury by site-specific application of a membrane-targeted complement regulatory protein may offer novel possibilities and insights into potential treatment strategies of reperfusion-induced injury.
Resumo:
Inhibitors of angiogenesis and radiation induce compensatory changes in the tumor vasculature both during and after treatment cessation. To assess the responses to irradiation and vascular endothelial growth factor-receptor tyrosine kinase inhibition (by the vascular endothelial growth factor tyrosine kinase inhibitor PTK787/ZK222854), mammary carcinoma allografts were investigated by vascular casting; electron, light, and confocal microscopy; and immunoblotting. Irradiation and anti-angiogenic therapy had similar effects on the tumor vasculature. Both treatments reduced tumor vascularization, particularly in the tumor medulla. After cessation of therapy, the tumor vasculature expanded predominantly by intussusception with a plexus composed of enlarged sinusoidal-like vessels containing multiple transluminal tissue pillars. Tumor revascularization originated from preserved alpha-smooth muscle actin-positive vessels in the tumor cortex. Quantification revealed that recovery was characterized by an angiogenic switch from sprouting to intussusception. Up-regulated alpha-smooth muscle actin-expression during recovery reflected the recruitment of alpha-smooth muscle actin-positive cells for intussusception as part of the angio-adaptive mechanism. Tumor recovery was associated with a dramatic decrease (by 30% to 40%) in the intratumoral microvascular density, probably as a result of intussusceptive pruning and, surprisingly, with only a minimal reduction of the total microvascular (exchange) area. Therefore, the vascular supply to the tumor was not severely compromised, as demonstrated by hypoxia-inducible factor-1alpha expression. Both irradiation and anti-angiogenic therapy cause a switch from sprouting to intussusceptive angiogenesis, representing an escape mechanism and accounting for the development of resistance, as well as rapid recovery, after cessation of therapy.
Resumo:
Mayer H. Entrepreneurship in a hub-and-spoke industrial district: firm survey evidence from Seattle's technology industry, Regional Studies. The paper investigates entrepreneurial dynamics in a hub-and-spoke industrial district. Using data on the genealogy of high-technology firms in Seattle, Washington State, the study examines the ways in which entrepreneurial firms relate to their parent firms and the role of agglomeration economies. The results illustrate that entrepreneurship is an important vehicle for the diversification of such a district. When compared, hub-related spinoffs such as those founded by former Microsoft employees do not differ much from other start-ups. The differences between Microsoft spinoffs and start-ups are very limited; both diversify the regional economy by entering new markets when compared with their parents.
Resumo:
The Earth's bow shock is very efficient in accelerating ions out of the incident solar wind distribution to high energies (≈ 200 keV/e). Fluxes of energetic ions accelerated at the quasi-parallel bow shock, also known as diffuse ions, are best represented by exponential spectra in energy/charge, which require additional assumptions to be incorporated into these model spectra. One of these assumptions is a so-called "free escape boundary" along the interplanetary magnetic field into the upstream direction. Locations along the IBEX orbit are ideally suited for in situ measurements to investigate the existence of an upstream free escape boundary for bow shock accelerated ions. In this study we use 2 years of ion measurements from the background monitor on the IBEX spacecraft, supported by ACE solar wind observations. The IBEX Background Monitor is sensitive to protons > 14 keV, which includes the energy of the maximum flux for diffuse ions. With increasing distance from the bow shock along the interplanetary magnetic field, the count rates for diffuse ions stay constant for ions streaming away from the bow shock, while count rates for diffuse ions streaming toward the shock gradually decrease from a maximum value to ~1/e at distances of about 10 RE to 14 RE. These observations of a gradual decrease support the transition to a free escape continuum for ions of energy >14 keV at distances from 10 RE to 14 RE from the bow shock.
Resumo:
The presentation will start by unfolding the various layers of chariot imagery in early Indian sources, namely, chariots as vehicles of gods such as the sun (sūrya), i.e. as symbol of cosmic stability; chariots as symbols of royal power and social prestige e.g. of Brahmins; and, finally, chariots as metaphors for the “person”, the “mind” and the “way to liberation” (e.g., Kaṭ.-Up. III.3; Maitr.-Up. II. 6). In Buddhist and non-Buddhist sources, chariots are in certain aspects used as a metaphor for the (old) human body (e.g., Caraka-S., Vi.3.37-38; D II.100; D II.107); apart from that, there is, of course, mention of the “real” use of chariots in sports, cults, journey, and combat. The most prominent example of the Buddhist use of chariot imagery is its application as a model for the person (S I.134 f.; Milindapañha, ed. Trenckner, 26), i.e., for highlighting the “non-substantial self”. There are, however, other significant examples of the usage of chariot imagery in early Buddhist texts. Of special interest are those cases in which chariot metaphors were applied in order to explain how the ‘self’ may proceed on the way to salvation – with ‘mindfulness’ or the ‘self’ as charioteer, with ‘wisdom’ and ‘confidence’ as horses etc. (e.g. S I. 33; S V.7; Dhp 94; or the Nārada-Jātaka, No. 545, verses 181-190). One might be tempted to say that these instances reaffirm the traditional soteriology of a substantial “progressing soul”. Taking conceptual metaphor analysis as a tool, I will, in contrast, argue that there is a special Buddhist use of this metaphor. Indeed, at first sight, it seems to presuppose a non-Buddhist understanding (the “self” as charioteer; the chariot as vehicle to liberation, etc.). Yet, it will be argued that in these cases the chariot imagery is no longer fully “functional”. The Buddhist usage may, therefore, best be described as a final allegorical phase of the chariot-imagery, which results in a thorough deconstruction of the “chariot” itself.
Resumo:
Natural Abs represent the indigenous immune repertoire and are thus present at birth and persist throughout life. Previously, human autoantibodies to the alpha domain of the high-affinity IgE receptor (FcepsilonRIalpha) have been isolated from Ab libraries derived from normal donors and patients with chronic urticaria. To investigate whether these anti-FcepsilonRIalpha Abs are present in the germline repertoire, we constructed a phage Fab display library from human cord blood, which represents the naive immune repertoire before exposure to exogenous Ags. All isolated clones specific to the FcepsilonRIalpha had the same sequence. This single IgM Ab, named CBMalpha8, was strictly in germline configuration and had high affinity and functional in vitro anaphylactogenic activity. Inhibition experiments indicated an overlapping epitope on the FcepsilonRIalpha recognized by both CBMalpha8 and the previously isolated anti-FcepsilonRIalpha Abs from autoimmune and healthy donors. This common epitope on FcepsilonRIalpha coincides with the binding site for IgE. Affinity measurements demonstrated the presence of Abs showing CBMalpha8-like specificity, but with a significantly lower affinity in i.v. Ig, a therapeutic multidonor IgG preparation. We propose a hypothesis of escape mutants, whereby the resulting lower affinity IgG anti-FcepsilonRIalpha Abs are rendered less likely to compete with IgE for binding to FcepsilonRIalpha.
Resumo:
BACKGROUND Hepatitis B viruses (HBV) harboring mutations in the a-determinant of the Hepatitis B surface antigen (HBsAg) are associated with reduced reactivity of HBsAg assays. OBJECTIVES To evaluate the sensitivity and specificity of three HBsAg point-of-care tests for the detection of HBsAg of viruses harboring HBsAg mutations. STUDY DESIGN A selection of 50 clinical plasma samples containing HBV with HBsAg mutations was used to evaluate the performance of three HBsAg point-of-care tests (Vikia(®), bioMérieux, Marcy-L'Étoile, France. Alere Determine HBsAg™, Iverness Biomedical Innovations, Köln, Germany. Quick Profile™, LumiQuick Diagnostics, California, USA) and compared to the ARCHITECT HBsAg Qualitative(®) assay (Abbott Laboratories, Sligo, Ireland). RESULTS The sensitivity of the point-of-care tests ranged from 98% to 100%. The only false-negative result occurred using the Quick Profile™ assay with a virus harboring a D144A mutation. CONCLUSIONS The evaluated point-of-care tests revealed an excellent sensitivity in detecting HBV samples harboring HBsAg mutations.
Resumo:
Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition.
Resumo:
Elemental carbon (EC) or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In this study, radiocarbon (14C) based source apportionment is used to distinguish between fossil fuel and biomass burning sources of EC isolated from aerosol filter samples collected in Beijing from June 2010 to May 2011. The 14C results demonstrate that EC is consistently dominated by fossil-fuel combustion throughout the whole year with a mean contribution of 79% ± 6% (ranging from 70% to 91%), though EC has a higher mean and peak concentrations in the cold season. The seasonal molecular pattern of hopanes (i.e., a class of organic markers mainly emitted during the combustion of different fossil fuels) indicates that traffic-related emissions are the most important fossil source in the warm period and coal combustion emissions are significantly increased in the cold season. By combining 14C based source apportionment results and picene (i.e., an organic marker for coal emissions) concentrations, relative contributions from coal (mainly from residential bituminous coal) and vehicle to EC in the cold period were estimated as 25 ± 4% and 50 ± 7%, respectively, whereas the coal combustion contribution was negligible or very small in the warm period.