21 resultados para Engineering applications
Resumo:
Polymer implants are interesting alternatives to the contemporary load-bearing implants made from metals. Polyetheretherketone (PEEK), a well-established biomaterial for example, is not only iso-elastic to bone but also permits investigating the surrounding soft tissues using magnetic resonance imaging or computed tomography, which is particularly important for cancer patients. The commercially available PEEK bone implants, however, require costly coatings, which restricts their usage. As an alternative to coatings, plasma activation can be applied. The present paper shows the plasma-induced preparation of nanostructures on polymer films and on injection-molded micro-cantilever arrays and the associated chemical modifications of the surface. In vitro cell experiments indicate the suitability of the activation process. In addition, we show that microstructures such as micro-grooves 1 μm deep and 20 μm wide cause cell alignment. The combination of micro-injection molding, simultaneous microstructuring using inserts/bioreplica and plasma treatments permits the preparation of polymer implants with nature-analogue, anisotropic micro- and nanostructures.
Resumo:
There is great demand for easily-accessible, user-friendly dietary self-management applications. Yet accurate, fully-automatic estimation of nutritional intake using computer vision methods remains an open research problem. One key element of this problem is the volume estimation, which can be computed from 3D models obtained using multi-view geometry. The paper presents a computational system for volume estimation based on the processing of two meal images. A 3D model of the served meal is reconstructed using the acquired images and the volume is computed from the shape. The algorithm was tested on food models (dummy foods) with known volume and on real served food. Volume accuracy was in the order of 90 %, while the total execution time was below 15 seconds per image pair. The proposed system combines simple and computational affordable methods for 3D reconstruction, remained stable throughout the experiments, operates in near real time, and places minimum constraints on users.
Resumo:
An analysis about the effect of carbon enrichment of allylhydridopolycarbosilane SMP10® with divinylbenzene (DVB) as a promising material for electrical conductive micro-electrical mechanical systems (MEMS) is presented. The liquid precursors can be micropipetted and cured in polytetrafluoroethylene (PTFE) molds to produce 14 mm diameter disc shaped samples. The effect of pyrolysis temperature and carbon content on the electrical conductivity is discussed. The addition of 28.7 wt.% of DVB was found to be the optimum amount. Carbon was preserved in the microstructure during pyrolysis and the ceramic yield increased from 77.5 to 80.5 wt.%. The electrical conductivity increased from 10−6 to 1 S/cm depending on the annealing temperature. Furthermore, the ceramic samples obtained with this composition were found to be in many cases crack free or with minimal cracks in contrast with the behavior of pure SMP10. Using the same process we demonstrate that also microsized ceramic samples can be produced.
Resumo:
This review reports on the application of charge density analysis in the field of crystal engineering, which is one of the most growing and productive areas of the entire field of crystallography. While methods to calculate or measure electron density are not discussed in detail, the derived quantities and tools, useful for crystal engineering analyses, are presented and their applications in the recent literature are illustrated. Potential developments and future perspectives are also highlighted and critically discussed.
Resumo:
We present a real-world problem that arises in security threat detection applications. The problem consists of deploying mobile detectors on moving units that follow predefined routes. Examples of such units are buses, coaches, and trolleys. Due to a limited budget not all available units can be equipped with a detector. The goal is to equip a subset of units such that the utility of the resulting coverage is maximized. Existing methods for detector deployment are designed to place detectors in fixed locations and are therefore not applicable to the problem considered here. We formulate the planning problem as a binary linear program and present a coverage heuristic for generating effective deployments in short CPU time. The heuristic has theoretical performance guarantees for important special cases of the problem. The effectiveness of the coverage heuristic is demonstrated in a computational analysis based on 28 instances that we derived from real-world data.