20 resultados para Endogenous Development


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part summarises the origins, definitions and debates around the general notions of development, culture and associated more specific concepts such as identity, tradition, exogenous and endogenous knowledge, institutions, governance or territoriality. A second part highlights how culture and development got related to the debates around sustainable governance of natural resources and forests. The third part illustrates on the basis of a case study from Kenya and Bolivia how culture as a transversal element of forest governance is expressed in empirical terms. Moreover it is shown how the cultural dimension affects positively or negatively the outcomes of culturally shaped forest governance outcomes and the role these effects play in shaping the sustainability of the socio-ecological systems of forests in Africa and South America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolomics is the global and unbiased survey of the complement of small molecules (say, <1 kDa) in a biofluid, tissue, organ or organism and measures the end-products of the cellular metabolism of both endogenous and exogenous substrates. Many drug candidates fail during Phase II and III clinical trials at an enormous cost to the pharmaceutical industry in terms of both time lost and of financial resources. The constantly evolving model of drug development now dictates that biomarkers should be employed in preclinical development for the early detection of likely-to-fail candidates. Biomarkers may also be useful in the preselection of patients and through the subclassification of diseases in clinical drug development. Here we show with examples how metabolomics can assist in the preclinical development phases of discovery, pharmacology, toxicology, and ADME. Although not yet established as a clinical trial patient prescreening procedure, metabolomics shows considerable promise in this regard. We can be certain that metabolomics will join genomics and transcriptomics in lubricating the wheels of clinical drug development in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Throughout their history mountain communities have had to adapt to changing environmental and socio-economic conditions. They have developed strategies and specialized knowledge to sustain their livelihoods in a context of adverse climatic events and constant change. As negotiations and discussions on climate change emphasize the critical need for locally relevant and community owned adaptation strategies, there is a need for new tools to capitalize on this local knowledge and endogenous potential for innovation. The toolkit Promoting Local Innovation (PLI) was designed by the Centre for Development and Environment (CDE) of the University of Bern, Switzerland, to facilitate a participatory social learning process which identifies locally available innovations that can be implemented for community development. It is based on interactive pedagogy and joint learning among different stakeholders in the local context. The tried-and-tested tool was developed in the Andean region in 2004, and then used in International Union for Conservation of Nature (IUCN) climate change adaptation projects in Thailand, Burkina Faso, Senegal, and Chile. These experiences showed that PLI can be used to involve all relevant stakeholders in establishing strategies and actions needed for rural communities to adapt to climate change impacts, while building on local innovation potential and promoting local ownership

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adenosine receptors are members of the G-protein coupled receptor (GPCR) family which represents the largest class of cell-surface proteins mediating cellular communication. As a result, GPCRs are formidable drug targets and it is estimated that approximately 30% of the marketed drugs act through members of this receptor class. There are four known subtypes of adenosine receptors: A1, A2A, A2B and A3. The adenosine A1 receptor, which is the subject of this presentation, mediates the physiological effects of adenosine in various tissues including the brain, heart, kidney and adipocytes. In the brain for instance, its role in epilepsy and ischemia has been the focus of many studies. Previous attempts to study the biosynthesis, trafficking and agonist-induced internalisation of the adenosine A1 receptor in neurons using fluorescent protein-receptor fusion constructs have been hampered by the sheer size of the fluorescent protein (GFP) that ultimately affected the function of the receptor. We have therefore initiated a research programme to develop small molecule fluorescent agonists that selectively activate the adenosine A1 receptor. Our probe design is based on the endogenous ligand adenosine and the known unselective adenosine receptor agonist NECA. We have synthesised a small library of non-fluorescent adenosine derivatives that have different cyclic and bicyclic moieties at the 6 position of the purine ring and have evaluated the pharmacology of these compounds using a yeast-based assay. This analysis revealed compounds with interesting behaviour, i.e. exhibiting subtype-selectivity and biased signalling, that can be potentially used as tool compounds in their own right for cellular studies of the adenosine A1 receptor. Furthermore, we have also linked fluorescent dyes to the purine ring and discovered fluorescent compounds that can activate the adenosine A1 receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertebrate limbs develop in a temporal proximodistal sequence, with proximal regions specified and generated earlier than distal ones. Whereas considerable information is available on the mechanisms promoting limb growth, those involved in determining the proximodistal identity of limb parts remain largely unknown. We show here that retinoic acid (RA) is an upstream activator of the proximal determinant genes Meis1 and Meis2. RA promotes proximalization of limb cells and endogenous RA signaling is required to maintain the proximal Meis domain in the limb. RA synthesis and signaling range, which initially span the entire lateral plate mesoderm, become restricted to proximal limb domains by the apical ectodermal ridge (AER) activity following limb initiation. We identify fibroblast growth factor (FGF) as the main molecule responsible for this AER activity and propose a model integrating the role of FGF in limb cell proliferation, with a specific function in promoting distalization through inhibition of RA production and signaling.