28 resultados para Electron microscopy (TEM and SEM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have quantitated the degree of structural preservation in cryo-sections of a vitrified biological specimen. Previous studies have used sections of periodic specimens to assess the resolution present, but preservation before sectioning was not assessed and so the damage due particularly to cutting was not clear. In this study large single crystals of lysozyme were vitrified and from these X-ray diffraction patterns extending to better than 2.1A were obtained. The crystals were high pressure frozen in 30% dextran, and cryo-sectioned using a diamond knife. In the best case, preservation to a resolution of 7.9A was shown by electron diffraction, the first observation of sub-nanometre structural preservation in a vitreous section.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-containing biological material cannot withstand the vacuum of the transmission electron microscope. The classical solution to this problem has been to dehydrate chemically fixed biological samples and then embed them in resin. During such treatment, the bacterial nucleoid is especially prone to aggregation, which affects its global shape and fine structure. Initial attempts to deal with aggregation by optimizing chemical fixation yielded contradictory results. Two decades ago, the situation improved with the introduction of freeze-substitution. This method is based on dehydration of unfixed cryo-immobilized samples at low temperature, which substantially reduces aggregation. As a result, the global shape of the nucleoid can be fairly well defined. Overall, in actively growing bacteria, the nucleoids are dispersed and "coralline" but become more confined when growth ceases. However, it is usually impossible to determine the molecular arrangement of DNA in the nucleoids of freeze-substituted bacteria because crystallization and the subsequent removal of water during substitution result in unavoidable distortions at the ultrastructural level. Recently, cryo-electron microscopy of vitreous sections has enabled the fully hydrated bacterial nucleoid to be studied close to the native state. Such studies have revealed aspects of bacterial nucleoid organization that are not preserved by freeze-substitution, including locally parallel or twisted bundles of DNA filaments, which are more frequently observed once bacterial growth has stopped, whereas in actively growing bacteria, the DNA is seen to be in a mostly disordered pattern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The glucose transporter IICB of the Escherichia coli phosphotransferase system (PTS) consists of a polytopic membrane domain (IIC) responsible for substrate transport and a hydrophilic C-terminal domain (IIB) responsible for substrate phosphorylation. We have overexpressed and purified a triple mutant of IIC (mut-IIC), which had recently been shown to be suitable for crystallization purposes. Mut-IIC was homodimeric as determined by blue native-PAGE and gel-filtration, and had an eyeglasses-like structure as shown by negative-stain transmission electron microscopy (TEM) and single particle analysis. Glucose binding and transport by mut-IIC, mut-IICB and wildtype-IICB were compared with scintillation proximity and in vivo transport assays. Binding was reduced and transport was impaired by the triple mutation. The scintillation proximity assay allowed determination of substrate binding, affinity and specificity of wildtype-IICB by a direct method. 2D crystallization of mut-IIC yielded highly-ordered tubular crystals and made possible the calculation of a projection structure at 12Å resolution by negative-stain TEM. Immunogold labeling TEM revealed the sidedness of the tubular crystals, and high-resolution atomic force microscopy the surface structure of mut-IIC. This work presents the structure of a glucose PTS transporter at the highest resolution achieved so far and sets the basis for future structural studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural analyses of heterologously expressed mammalian membrane proteins remain a great challenge given that microgram to milligram amounts of correctly folded and highly purified proteins are required. Here, we present a novel method for the expression and affinity purification of recombinant mammalian and in particular human transport proteins in Xenopus laevis frog oocytes. The method was validated for four human and one murine transporter. Negative stain transmission electron microscopy (TEM) and single particle analysis (SPA) of two of these transporters, i.e., the potassium-chloride cotransporter 4 (KCC4) and the aquaporin-1 (AQP1) water channel, revealed the expected quaternary structures within homogeneous preparations, and thus correct protein folding and assembly. This is the first time a cation-chloride cotransporter (SLC12) family member is isolated, and its shape, dimensions, low-resolution structure and oligomeric state determined by TEM, i.e., by a direct method. Finally, we were able to grow 2D crystals of human AQP1. The ability of AQP1 to crystallize was a strong indicator for the structural integrity of the purified recombinant protein. This approach will open the way for the structure determination of many human membrane transporters taking full advantage of the Xenopus laevis oocyte expression system that generally yields robust functional expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated (1) the micromorphology by scanning electron microscopy (SEM) and (2) the adhesive performance by microtensile bond strength (μTBS) of diamond bur-treated dentin compared to Er:YAG laser-treated dentin of human primary teeth. (1) For qualitative SEM evaluation, dentin of 18 second primary molars (n = 3/method) was treated with either diamond bur as a control (group 1a: 40 μm diamond bur only (clinical situation); group 1b: grinding + 40 μm diamond bur) or with Er:YAG laser (group 2a (clinical situation, manufacturer's settings): 200 mJ/25 Hz (5 W) + 100 mJ/35 Hz (3.5 W) laser only; group 2b (experimental setting "high"): grinding + 400 mJ/20 Hz (8 W); group 2c (manufacturer's setting "finishing"): grinding + 100 mJ/35 Hz (3.5 W); group 2d (experimental setting "low"): grinding + 50 mJ/35 Hz (1.75 W)). (2) For evaluation of adhesive performance, 64 second primary molars were divided into four groups and treated as described for group 1b and groups 2b/c/d (n = 16/method), and μTBS of Clearfil SE/Clearfil Majesty Esthetic to dentin was measured. The SEM micrographs were qualitatively analyzed. The μTBS values were compared with a Kruskal-Wallis test. The significance level was set at α = 0.05. SEM micrographs showed the typical micromorphologies with a smear layer for the diamond bur groups and open dentin tubules for all laser-treated groups. However, in group 2d, the laser beam had insufficiently irradiated the dentin area, rendering the underlying ground surface partly visible. There were no statistically significant differences between μTBS values of the four groups (p = 0.394). This suggests that Er:YAG laser treatment of dentin of primary molars provides bond strengths similar to those obtained following diamond bur treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current chemotherapy of alveolar echinococcosis (AE) is based on benzimidazoles such as albendazole and has been shown to be parasitostatic rather than parasiticidal, requiring lifelong duration. Thus, new and more efficient treatment options are urgently needed. By employing a recently validated assay based on the release of functional phosphoglucose isomerase (PGI) from dying parasites, the activities of 26 dicationic compounds and of the (+)- and (-)-erythro-enantiomers of mefloquine were investigated. Initial screening of compounds was performed at 40 muM, and those compounds exhibiting considerable antiparasitic activities were also assessed at lower concentrations. Of the dicationic drugs, DB1127 (a diguanidino compound) with activities comparable to nitazoxanide was further studied. The activity of DB1127 was dose dependent and led to severe structural alterations, as visualized by electron microscopy. The (+)- and (-)-erythro-enantiomers of mefloquine showed similar dose-dependent effects, although higher concentrations of these compounds than of DB1127 were required for metacestode damage. In conclusion, of the drugs investigated here, the diguanidino compound DB1127 represents the most promising compound for further study in appropriate in vivo models for Echinococcus multilocularis infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Respiratory Society Task Force on primary ciliary dyskinesia (PCD) in children recently published recommendations for diagnosis and management. This paper compares these recommendations with current clinical practice in Europe. Questionnaires were returned by 194 paediatric respiratory centres caring for PCD patients in 26 countries. In most countries, PCD care was not centralised, with a median (interquartile range) of 4 (2-9) patients treated per centre. Overall, 90% of centres had access to nasal or bronchial mucosal biopsy. Samples were analysed by electron microscopy (77%) and ciliary function tests (57%). Nasal nitric oxide was used for screening in 46% of centres and saccharine tests in 36%. Treatment approaches varied widely, both within and between countries. European region, size of centre and the country's general government expenditure on health partly defined availability of advanced diagnostic tests and choice of treatments. In conclusion, we found substantial heterogeneity in management of PCD within and between countries, and poor concordance with current recommendations. This demonstrates how essential it is to standardise management and decrease inequality between countries. Our results also demonstrate the urgent need for research: to simplify PCD diagnosis, to understand the natural history and to test the effectiveness of interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organotypic slice culture explants of rat cortical tissue infected with Toxoplasma gondii tachyzoites were applied as an in vitro model to investigate host-pathogen interactions in cerebral toxoplasmosis. The kinetics of parasite proliferation and the effects of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) in infected organotypic cultures were monitored by light microscopy, transmission electron microscopy (TEM), and quantitative polymerase chain reaction (PCR) assay. As assessed by the loss of the structural integrity of the glial fibrillary acidic protein-intermediate filament network, tachyzoites infected and proliferated mainly within astrocytes, whereas neurons and microglia remained largely unaffected. Toxoplasma gondii proliferation was severely inhibited by IFN-y. However, this inhibition was not linked to tachyzoite-to-bradyzoite stage conversion. In contrast, TNF-alpha treatment resulted in a dramatically enhanced proliferation rate of the parasite. The cellular integrity in IFN-gamma-treated organotypic slice cultures was severely impaired compared with untreated and TNF-alpha-treated cultures. Thus, on infection of organotypic neuronal cultures, IFN-gamma and TNF-alpha exhibit largely detrimental effects, which could contribute to either inhibition or acceleration of parasite proliferation during cerebral toxoplasmosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell envelope of mycobacteria, which include the causative agents of tuberculosis and leprosy, is crucial for their success as pathogens. Despite a continued strong emphasis on identifying the multiple chemical components of this envelope, it has proven difficult to combine its components into a comprehensive structural model, primarily because the available ultrastructural data rely on conventional electron microscopy embedding and sectioning, which are known to induce artifacts. The existence of an outer membrane bilayer has long been postulated but has never been directly observed by electron microscopy of ultrathin sections. Here we have used cryo-electron microscopy of vitreous sections (CEMOVIS) to perform a detailed ultrastructural analysis of three species belonging to the Corynebacterineae suborder, namely, Mycobacterium bovis BCG, Mycobacterium smegmatis, and Corynebacterium glutamicum, in their native state. We provide new information that accurately describes the different layers of the mycobacterial cell envelope and challenges current models of the organization of its components. We show a direct visualization of an outer membrane, analogous to that found in gram-negative bacteria, in the three bacterial species examined. Furthermore, we demonstrate that mycolic acids, the hallmark of mycobacteria and related genera, are essential for the formation of this outer membrane. In addition, a granular layer and a low-density zone typifying the periplasmic space of gram-positive bacteria are apparent in CEMOVIS images of mycobacteria and corynebacteria. Based on our observations, a model of the organization of the lipids in the outer membrane is proposed. The architecture we describe should serve as a reference for future studies to relate the structure of the mycobacterial cell envelope to its function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of porosity due to dissolution/precipitation processes of minerals and the associated change of transport parameters are of major interest for natural geological environments and engineered underground structures. We designed a reproducible and fast to conduct 2D experiment, which is flexible enough to investigate several process couplings implemented in the numerical code OpenGeosys-GEM (OGS-GEM). We investigated advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. In addition, the system allowed to investigate the influence of microscopic (pore scale) processes on macroscopic (continuum scale) transport. A Plexiglas tank of dimension 10 × 10 cm was filled with a 1 cm thick reactive layer consisting of a bimodal grain size distribution of celestite (SrSO4) crystals, sandwiched between two layers of sand. A barium chloride solution was injected into the tank causing an asymmetric flow field to develop. As the barium chloride reached the celestite region, dissolution of celestite was initiated and barite precipitated. Due to the higher molar volume of barite, its precipitation caused a porosity decrease and thus also a decrease in the permeability of the porous medium. The change of flow in space and time was observed via injection of conservative tracers and analysis of effluents. In addition, an extensive post-mortem analysis of the reacted medium was conducted. We could successfully model the flow (with and without fluid density effects) and the transport of conservative tracers with a (continuum scale) reactive transport model. The prediction of the reactive experiments initially failed. Only the inclusion of information from post-mortem analysis gave a satisfactory match for the case where the flow field changed due to dissolution/precipitation reactions. We concentrated on the refinement of post-mortem analysis and the investigation of the dissolution/precipitation mechanisms at the pore scale. Our analytical techniques combined scanning electron microscopy (SEM) and synchrotron X-ray micro-diffraction/micro-fluorescence performed at the XAS beamline (Swiss Light Source). The newly formed phases include an epitaxial growth of barite micro-crystals on large celestite crystals (epitaxial growth) and a nano-crystalline barite phase (resulting from the dissolution of small celestite crystals) with residues of celestite crystals in the pore interstices. Classical nucleation theory, using well-established and estimated parameters describing barite precipitation, was applied to explain the mineralogical changes occurring in our system. Our pore scale investigation showed limits of the continuum scale reactive transport model. Although kinetic effects were implemented by fixing two distinct rates for the dissolution of large and small celestite crystals, instantaneous precipitation of barite was assumed as soon as oversaturation occurred. Precipitation kinetics, passivation of large celestite crystals and metastability of supersaturated solutions, i.e. the conditions under which nucleation cannot occur despite high supersaturation, were neglected. These results will be used to develop a pore scale model that describes precipitation and dissolution of crystals at the pore scale for various transport and chemical conditions. Pore scale modelling can be used to parameterize constitutive equations to introduce pore-scale corrections into macroscopic (continuum) reactive transport models. Microscopic understanding of the system is fundamental for modelling from the pore to the continuum scale.