26 resultados para Electric relays
Resumo:
Amyotrophic lateral sclerosis (ALS) has been associated with exposures in so-called 'electrical occupations'. It is unclear if this possible link may be explained by exposure to extremely low-frequency magnetic fields (ELF-MF) or by electrical shocks. We evaluated ALS mortality in 2000-2008 and exposure to ELF-MF and electrical shocks in the Swiss National Cohort, using job exposure matrices for occupations at censuses 1990 and 2000. We compared 2.2 million workers with high or medium vs. low exposure to ELF-MF and electrical shocks using Cox proportional hazard models. Results showed that mortality from ALS was higher in people who had medium or high ELF-MF exposure in both censuses (HR 1.55 (95% CI 1.11-2.15)), but closer to unity for electrical shocks (HR 1.17 (95% CI 0.83-1.65)). When both exposures were included in the same model, the HR for ELF-MF changed little (HR 1.56), but the HR for electric shocks was attenuated to 0.97. In conclusion, there was an association between exposure to ELF-MF and mortality from ALS among workers with a higher likelihood of long-term exposure.
Resumo:
The temporal dynamics of the neural activity that implements the dimensions valence and arousal during processing of emotional stimuli were studied in two multi-channel ERP experiments that used visually presented emotional words (experiment 1) and emotional pictures (experiment 2) as stimulus material. Thirty-two healthy subjects participated (mean age 26.8 +/- 6.4 years, 24 women). The stimuli in both experiments were selected on the basis of verbal reports in such a way that we were able to map the temporal dynamics of one dimension while controlling for the other one. Words (pictures) were centrally presented for 450 (600) ms with interstimulus intervals of 1,550 (1,400) ms. ERP microstate analysis of the entire epochs of stimulus presentations parsed the data into sequential steps of information processing. The results revealed that in several microstates of both experiments, processing of pleasant and unpleasant valence (experiment 1, microstate #3: 118-162 ms, #6: 218-238 ms, #7: 238-266 ms, #8: 266-294 ms; experiment 2, microstate #5: 142-178 ms, #6: 178-226 ms, #7: 226-246 ms, #9: 262-302 ms, #10: 302-330 ms) as well as of low and high arousal (experiment 1, microstate #8: 266-294 ms, #9: 294-346 ms; experiment 2, microstate #10: 302-330 ms, #15: 562-600 ms) involved different neural assemblies. The results revealed also that in both experiments, information about valence was extracted before information about arousal. The last microstate of valence extraction was identical with the first microstate of arousal extraction.
Resumo:
OBJECTIVE To compare EEG power spectra and LORETA-computed intracortical activity between Alzheimer's disease (AD) patients and healthy controls, and to correlate the results with cognitive performance in the AD group. METHODS Nineteen channel resting EEG was recorded in 21 mild to moderate AD patients and in 23 controls. Power spectra and intracortical LORETA tomography were computed in seven frequency bands and compared between groups. In the AD patients, the EEG results were correlated with cognitive performance (Mini Mental State Examination, MMSE). RESULTS AD patients showed increased power in EEG delta and theta frequency bands, and decreased power in alpha2, beta1, beta2 and beta3. LORETA specified that increases and decreases of power affected different cortical areas while largely sparing prefrontal cortex. Delta power correlated negatively and alpha1 power positively with the AD patients' MMSE scores; LORETA tomography localized these correlations in left temporo-parietal cortex. CONCLUSIONS The non-invasive EEG method of LORETA localized pathological cortical activity in our mild to moderate AD patients in agreement with the literature, and yielded striking correlations between EEG delta and alpha1 activity and MMSE scores in left temporo-parietal cortex. SIGNIFICANCE The present data support the hypothesis of an asymmetrical progression of the Alzheimer's disease.
Resumo:
We study the interaction between a magnetic dipole mimicking the Gerasimovich magnetic anomaly on the lunar surface and the solar wind in a self-consistent 3-D quasi-neutral hybrid simulation where ions are modeled as particles and electrons as a charge-neutralizing fluid. Especially, we consider the origin of the recently observed electric potentials at lunar magnetic anomalies. An antimoonward Hall electric field forms in our simulation resulting in a potential difference of <300V on the lunar surface, in which the value is similar to observations. Since the hybrid model assumes charge neutrality, our results suggest that the electric potentials at lunar magnetic anomalies can be formed by decoupling of ion and electron motion even without charge separation.
Resumo:
In this paper we present results on measurements of the dielectric strength of liquid argon near its boiling point and cathode-anode distances in the range of 0.1 mm to 40 mm with spherical cathode and plane anode. We show that at such distances the applied electric field at which breakdowns occur is as low as 40 kV/cm. Flash-overs across the ribbed dielectric of the high voltage feed-through are observed for a length of 300 mm starting from a voltage of 55 kV. These results contribute to set reference for the breakdown-free design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).
Resumo:
The electric organ (EO) of weakly electric mormyrids consists of flat, disk-shaped electrocytes with distinct anterior and posterior faces. There are multiple species-characteristic patterns in the geometry of the electrocytes and their innervation. To further correlate electric organ discharge (EOD) with EO anatomy, we examined four species of the mormyrid genus Campylomormyrus possessing clearly distinct EODs. In C. compressirostris, C. numenius, and C. tshokwe, all of which display biphasic EODs, the posterior face of the electrocytes forms evaginations merging to a stalk system receiving the innervation. In C. tamandua that emits a triphasic EOD, the small stalks of the electrocyte penetrate the electrocyte anteriorly before merging on the anterior side to receive the innervation. Additional differences in electrocyte anatomy among the former three species with the same EO geometry could be associated with further characteristics of their EODs. Furthermore, in C. numenius, ontogenetic changes in EO anatomy correlate with profound changes in the EOD. In the juvenile the anterior face of the electrocyte is smooth, whereas in the adult it exhibits pronounced surface foldings. This anatomical difference, together with disparities in the degree of stalk furcation, probably contributes to the about 12 times longer EOD in the adult.
Resumo:
Today's pulsed THz sources enable us to excite, probe, and coherently control the vibrational or rotational dynamics of organic and inorganic materials on ultrafast time scales. Driven by standard laser sources THz electric field strengths of up to several MVm−1 have been reported and in order to reach even higher electric field strengths the use of dedicated electric field enhancement structures has been proposed. Here, we demonstrate resonant electric field enhancement structures, which concentrate the incident electric field in sub-diffraction size volumes and show an electric field enhancement as high as ~14,000 at 50 GHz. These values have been confirmed through a combination of near-field imaging experiments and electromagnetic simulations.
New fully kinetic model for the study of electric potential, plasma, and dust above lunar landscapes
Resumo:
We have developed a new fully kinetic electrostatic simulation, HYBes, to study how the lunar landscape affects the electric potential and plasma distributions near the surface and the properties of lifted dust. The model embodies new techniques that can be used in various types of physical environments and situations. We demonstrate the applicability of the new model in a situation involving three charged particle species, which are solar wind electrons and protons, and lunar photoelectrons. Properties of dust are studied with test particle simulations by using the electric fields derived from the HYBes model. Simulations show the high importance of the plasma and the electric potential near the surface. For comparison, the electric potential gradients near the landscapes with feature sizes of the order of the Debye length are much larger than those near a flat surface at different solar zenith angles. Furthermore, dust test particle simulations indicate that the landscape relief influences the dust location over the surface. The study suggests that the local landscape has to be taken into account when the distributions of plasma and dust above lunar surface are studied. The HYBes model can be applied not only at the Moon but also on a wide range of airless planetary objects such as Mercury, other planetary moons, asteroids, and nonactive comets.
Resumo:
We present a study on the dependence of electric breakdown discharge properties on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).