48 resultados para Educational and virtual processes
Resumo:
11beta-Hydroxysteroid dehydrogenase (11beta-HSD) enzymes catalyze the conversion of biologically inactive 11-ketosteroids into their active 11beta-hydroxy derivatives and vice versa. Inhibition of 11beta-HSD1 has considerable therapeutic potential for glucocorticoid-associated diseases including obesity, diabetes, wound healing, and muscle atrophy. Because inhibition of related enzymes such as 11beta-HSD2 and 17beta-HSDs causes sodium retention and hypertension or interferes with sex steroid hormone metabolism, respectively, highly selective 11beta-HSD1 inhibitors are required for successful therapy. Here, we employed the software package Catalyst to develop ligand-based multifeature pharmacophore models for 11beta-HSD1 inhibitors. Virtual screening experiments and subsequent in vitro evaluation of promising hits revealed several selective inhibitors. Efficient inhibition of recombinant human 11beta-HSD1 in intact transfected cells as well as endogenous enzyme in mouse 3T3-L1 adipocytes and C2C12 myotubes was demonstrated for compound 27, which was able to block subsequent cortisol-dependent activation of glucocorticoid receptors with only minor direct effects on the receptor itself. Our results suggest that inhibitor-based pharmacophore models for 11beta-HSD1 in combination with suitable cell-based activity assays, including such for related enzymes, can be used for the identification of selective and potent inhibitors.
Resumo:
In July and August 2010 floods of unprecedented impact afflicted Pakistan. The floods resulted from a series of intense multi-day precipitation events in July and early August. At the same time a series of blocking anticyclones dominated the upper-level flow over western Russia and breaking waves i.e. equatorward extrusions of stratospheric high potential vorticity (PV) air formed along the downstream flank of the blocks. Previous studies suggested that these extratropical upper-level breaking waves were crucial for instigating the precipitation events in Pakistan. Here a detailed analysis is provided of the extratropical forcing of the precipitation. Piecewise PV inversion is used to quantify the extratropical upper-level forcing associated with the wave breaking and trajectories are calculated to study the pathways and source regions of the moisture that precipitated over Pakistan. Limited-area model simulations are carried out to complement the Lagrangian analysis. The precipitation events over Pakistan resulted from a combination of favourable boundary conditions with strong extratropical and monsoonal forcing factors. Above-normal sea-surface temperatures in the Indian Ocean led to an elevated lower-tropospheric moisture content. Surface monsoonal depressions ensured the transport of moist air from the ocean towards northeastern Pakistan. Along this pathway the air parcel humidity increased substantially (60–90% of precipitated moisture) via evapotranspiration from the land surface. Extratropical breaking waves influenced the surface wind field substantially by enhancing the wind component directed towards the mountains which reinforced the precipitation.
Resumo:
he UV spectrum of the adenine analogue 9-methyl-2-aminopurine (9M-2AP) is investigated with one- and two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm−1 resolution in a supersonic jet. The electronic origin at 32 252 cm−1 exhibits methyl torsional subbands that originate from the 0A′′1 (l = 0) and 1E ″ (l = ±1) torsional levels. These and further torsional bands that appear up to 000+230 cm−1 allow to fit the threefold (V 3) barriers of the torsional potentials as ∣∣V′′3∣∣=50 cm−1 in the S 0 and ∣∣V′3∣∣=126 cm−1 in the S 1 state. Using the B3LYP density functional and correlated approximate second-order coupled cluster CC2 methods, the methyl orientation is calculated to be symmetric relative to the 2AP plane in both states, with barriers of V′′3=20 cm−1 and V′3=115 cm−1. The 000 rotational band contour is 75% in-plane (a/b) polarized, characteristic for a dominantly long-axis 1ππ* excitation. The residual 25% c-axis polarization may indicate coupling of the 1ππ* to the close-lying 1 nπ* state, calculated at 4.00 and 4.01 eV with the CC2 method. However, the CC2 calculated 1 nπ oscillator strength is only 6% of that of the 1ππ* transition. The 1ππ* vibronic spectrum is very complex, showing about 40 bands within the lowest 500 cm−1. The methyl torsion and the low-frequency out-of-plane ν′1 and ν′2 vibrations are strongly coupled in the 1ππ* state. This gives rise to many torsion-vibration combination bands built on out-of-plane fundamentals, which are without precedence in the 1ππ* spectrum of 9H-2-aminopurine [S. Lobsiger, R. K. Sinha, M. Trachsel, and S. Leutwyler, J. Chem. Phys.134, 114307 (2011)]. From the Lorentzian broadening needed to fit the 000 contour of 9M-2AP, the 1ππ* lifetime is τ ⩾ 120 ps, reflecting a rapid nonradiative transition.
Resumo:
The goal of the current investigation was to compare two monitoring processes (judgments of learning [JOLs] and confidence judgments [CJs]) and their corresponding control processes (allocation of study time and selection of answers to maximize accuracy, respectively) in 5- to 7-year-old children (N=101). Children learned the meaning of Japanese characters and provided JOLs after a study phase and CJs after a memory test. They were given the opportunity to control their learning in self-paced study phases, and to control their accuracy by placing correct answers into a treasure chest and incorrect answers into a trash can. All three age groups gave significantly higher CJs for correct compared to incorrect answers, with no age-related differences in the magnitude of this difference, suggesting robust metacognitive monitoring skills in children as young as 5. Furthermore, a link between JOLs and study time was found in the 6- and 7-year-olds, such that children spent more time studying items with low JOLs compared to items with high JOLs. Also, 6- and 7-year-olds but not 5-year-olds spent more time studying difficult items compared to easier items. Moreover, age-related improvements were found in children's use of CJs to guide their selection of answers: although children as young as 5 placed their most confident answers in the treasure chest and least confident answers in the trash can, this pattern was more robust in older children. Overall, results support the view that some metacognitive judgments may be acted upon with greater ease than others among young children.
Resumo:
In previous work, Alpine glaciers have been identified as a secondary source of persistent organic pollutants (POPs). However, detailed understanding of the processes organic chemicals undergo in a glacial system was missing. Here, we present results from a chemical fate model describing deposition and incorporation of polychlorinated biphenyls (PCBs) into an Alpine glacier (Fiescherhorn, Switzerland) and an Arctic glacier (Lomonosovfonna, Norway). To understand PCB fate and dynamics, we investigate the interaction of deposition, sorption to ice and particles in the atmosphere and within the glacier, revolatilization, diffusion and degradation, and discuss the effects of these processes on the fate of individual PCB congeners. The model is able to reproduce measured absolute concentrations in the two glaciers for most PCB congeners. While the model generally predicts concentration profiles peaking in the 1970s, in the measurements, this behavior can only be seen for higher-chlorinated PCB congeners on Fiescherhorn glacier. We suspect seasonal melt processes are disturbing the concentration profiles of the lower-chlorinated PCB congeners. While a lower-chlorinated PCB congener is mainly deposited by dry deposition and almost completely revolatilized after deposition, a higher-chlorinated PCB congener is predominantly transferred to the glacier surface by wet deposition and then is incorporated into the glacier ice. The incorporated amounts of PCBs are higher on the Alpine glacier than on the Arctic glacier due to the higher precipitation rate and aerosol particle concentration on the former. Future studies should include the effects of seasonal melt processes, calculate the quantities of PCBs incorporated into the entire glacier surface, and estimate the quantity of chemicals released from glaciers to determine the importance of glaciers as a secondary source of organic chemicals to remote aquatic ecosystems.
Resumo:
A growing number of studies in humans demonstrate the involvement of vestibular information in tasks that are seemingly remote from well-known functions such as space constancy or postural control. In this review article we point out three emerging streams of research highlighting the importance of vestibular input: (1) Spatial Cognition: Modulation of vestibular signals can induce specific changes in spatial cognitive tasks like mental imagery and the processing of numbers. This has been shown in studies manipulating body orientation (changing the input from the otoliths), body rotation (changing the input from the semicircular canals), in clinical findings with vestibular patients, and in studies carried out in microgravity. There is also an effect in the reverse direction; top-down processes can affect perception of vestibular stimuli. (2) Body Representation: Numerous studies demonstrate that vestibular stimulation changes the representation of body parts, and sensitivity to tactile input or pain. Thus, the vestibular system plays an integral role in multisensory coordination of body representation. (3) Affective Processes and Disorders: Studies in psychiatric patients and patients with a vestibular disorder report a high comorbidity of vestibular dysfunctions and psychiatric symptoms. Recent studies investigated the beneficial effect of vestibular stimulation on psychiatric disorders, and how vestibular input can change mood and affect. These three emerging streams of research in vestibular science are—at least in part—associated with different neuronal core mechanisms. Spatial transformations draw on parietal areas, body representation is associated with somatosensory areas, and affective processes involve insular and cingulate cortices, all of which receive vestibular input. Even though a wide range of different vestibular cortical projection areas has been ascertained, their functionality still is scarcely understood.