27 resultados para Dispositivi medici
Resumo:
BACKGROUND Data on the association between subclinical thyroid dysfunction and fractures conflict. PURPOSE To assess the risk for hip and nonspine fractures associated with subclinical thyroid dysfunction among prospective cohorts. DATA SOURCES Search of MEDLINE and EMBASE (1946 to 16 March 2014) and reference lists of retrieved articles without language restriction. STUDY SELECTION Two physicians screened and identified prospective cohorts that measured thyroid function and followed participants to assess fracture outcomes. DATA EXTRACTION One reviewer extracted data using a standardized protocol, and another verified data. Both reviewers independently assessed methodological quality of the studies. DATA SYNTHESIS The 7 population-based cohorts of heterogeneous quality included 50,245 participants with 1966 hip and 3281 nonspine fractures. In random-effects models that included the 5 higher-quality studies, the pooled adjusted hazard ratios (HRs) of participants with subclinical hyperthyroidism versus euthyrodism were 1.38 (95% CI, 0.92 to 2.07) for hip fractures and 1.20 (CI, 0.83 to 1.72) for nonspine fractures without statistical heterogeneity (P = 0.82 and 0.52, respectively; I2= 0%). Pooled estimates for the 7 cohorts were 1.26 (CI, 0.96 to 1.65) for hip fractures and 1.16 (CI, 0.95 to 1.42) for nonspine fractures. When thyroxine recipients were excluded, the HRs for participants with subclinical hyperthyroidism were 2.16 (CI, 0.87 to 5.37) for hip fractures and 1.43 (CI, 0.73 to 2.78) for nonspine fractures. For participants with subclinical hypothyroidism, HRs from higher-quality studies were 1.12 (CI, 0.83 to 1.51) for hip fractures and 1.04 (CI, 0.76 to 1.42) for nonspine fractures (P for heterogeneity = 0.69 and 0.88, respectively; I2 = 0%). LIMITATIONS Selective reporting cannot be excluded. Adjustment for potential common confounders varied and was not adequately done across all studies. CONCLUSION Subclinical hyperthyroidism might be associated with an increased risk for hip and nonspine fractures, but additional large, high-quality studies are needed. PRIMARY FUNDING SOURCE Swiss National Science Foundation.
Resumo:
Subclinical thyroid dysfunction has been associated with coronary heart disease, but the risk of stroke is unclear. Our aim is to combine the evidence on the association between subclinical thyroid dysfunction and the risk of stroke in prospective cohort studies. We searched Medline (OvidSP), Embase, Web-of-Science, Pubmed Publisher, Cochrane and Google Scholar from inception to November 2013 using a cohort filter, but without language restriction or other limitations. Reference lists of articles were searched. Two independent reviewers screened articles according to pre-specified criteria and selected prospective cohort studies with baseline thyroid function measurements and assessment of stroke outcomes. Data were derived using a standardized data extraction form. Quality was assessed according to previously defined quality indicators by two independent reviewers. We pooled the outcomes using a random-effects model. Of 2,274 articles screened, six cohort studies, including 11,309 participants with 665 stroke events, met the criteria. Four of six studies provided information on subclinical hyperthyroidism including a total of 6,029 participants and five on subclinical hypothyroidism (n = 10,118). The pooled hazard ratio (HR) was 1.08 (95 % CI 0.87-1.34) for subclinical hypothyroidism (I (2) of 0 %) and 1.17 (95 % CI 0.54-2.56) for subclinical hyperthyroidism (I (2) of 67 %) compared to euthyroidism. Subgroup analyses yielded similar results. Our systematic review provides no evidence supporting an increased risk for stroke associated with subclinical thyroid dysfunction. However, the available literature is insufficient and larger datasets are needed to perform extended analyses. Also, there were insufficient events to exclude clinically significant risk from subclinical hyperthyroidism, and more data are required for subgroup analyses.
Resumo:
OBJECTIVE The objective was to determine the risk of stroke associated with subclinical hypothyroidism. DATA SOURCES AND STUDY SELECTION Published prospective cohort studies were identified through a systematic search through November 2013 without restrictions in several databases. Unpublished studies were identified through the Thyroid Studies Collaboration. We collected individual participant data on thyroid function and stroke outcome. Euthyroidism was defined as TSH levels of 0.45-4.49 mIU/L, and subclinical hypothyroidism was defined as TSH levels of 4.5-19.9 mIU/L with normal T4 levels. DATA EXTRACTION AND SYNTHESIS We collected individual participant data on 47 573 adults (3451 subclinical hypothyroidism) from 17 cohorts and followed up from 1972-2014 (489 192 person-years). Age- and sex-adjusted pooled hazard ratios (HRs) for participants with subclinical hypothyroidism compared to euthyroidism were 1.05 (95% confidence interval [CI], 0.91-1.21) for stroke events (combined fatal and nonfatal stroke) and 1.07 (95% CI, 0.80-1.42) for fatal stroke. Stratified by age, the HR for stroke events was 3.32 (95% CI, 1.25-8.80) for individuals aged 18-49 years. There was an increased risk of fatal stroke in the age groups 18-49 and 50-64 years, with a HR of 4.22 (95% CI, 1.08-16.55) and 2.86 (95% CI, 1.31-6.26), respectively (p trend 0.04). We found no increased risk for those 65-79 years old (HR, 1.00; 95% CI, 0.86-1.18) or ≥ 80 years old (HR, 1.31; 95% CI, 0.79-2.18). There was a pattern of increased risk of fatal stroke with higher TSH concentrations. CONCLUSIONS Although no overall effect of subclinical hypothyroidism on stroke could be demonstrated, an increased risk in subjects younger than 65 years and those with higher TSH concentrations was observed.
Resumo:
CONTEXT Hyperthyroidism is an established risk factor for atrial fibrillation (AF), but information concerning the association with variations within the normal range of thyroid function and subgroups at risk is lacking. OBJECTIVE This study aimed to investigate the association between normal thyroid function and AF prospectively and explore potential differential risk patterns. DESIGN, SETTING, AND PARTICIPANTS From the Rotterdam Study we included 9166 participants ≥ 45 y with TSH and/or free T4 (FT4) measurements and AF assessment (1997-2012 median followup, 6.8 y), with 399 prevalent and 403 incident AF cases. MAIN OUTCOME MEASURES Outcome measures were 3-fold: 1) hazard ratios (HRs) for the risk of incident AF by Cox proportional-hazards models, 2) 10-year absolute risks taking competing risk of death into account, and 3) discrimination ability of adding FT4 to the CHARGE-AF simple model, an established prediction model for AF. RESULTS Higher FT4 levels were associated with higher risks of AF (HR 1.63, 95% confidence interval, 1.19-2.22), when comparing those in the highest quartile to those in lowest quartile. Absolute 10-year risks increased with higher FT4 in participants ≤ 65 y from 1-9% and from 6-12% in subjects ≥ 65 y. Discrimination of the prediction model improved when adding FT4 to the simple model (c-statistic, 0.722 vs 0.729; P = .039). TSH levels were not associated with AF. CONCLUSIONS There is an increased risk of AF with higher FT4 levels within the normal range, especially in younger subjects. Adding FT4 to the simple model slightly improved discrimination of risk prediction.