20 resultados para Direct Analysis Method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tropical region is an area of maximum humidity and serves as the major humidity source of the globe. Among other phenomena, it is governed by the so-called Inter-Tropical Convergence Zone (ITCZ) which is commonly defined by converging low-level winds or enhanced precipitation. Given its importance as a humidity source, we investigate the humidity fields in the tropics in different reanalysis data sets, deduce the climatology and variability and assess the relationship to the ITCZ. Therefore, a new analysis method of the specific humidity distribution is introduced which allows detecting the location of the humidity maximum, the strength and the meridional extent. The results show that the humidity maximum in boreal summer is strongly shifted northward over the warm pool/Asia Monsoon area and the Gulf of Mexico. These shifts go along with a peak in the strength in both areas; however, the extent shrinks over the warm pool/Asia Monsoon area, whereas it is wider over the Gulf of Mexico. In winter, such connections between location, strength and extent are not found. Still, a peak in strength is again identified over the Gulf of Mexico in boreal winter. The variability of the three characteristics is dominated by inter-annual signals in both seasons. The results using ERA-interim data suggest a positive trend in the Gulf of Mexico/Atlantic region from 1979 to 2010, showing an increased northward shift in the recent years. Although the trend is only weakly confirmed by the results using MERRA reanalysis data, it is in phase with a trend in hurricane activity�a possible hint of the importance of the new method on hurricanes. Furthermore, the position of the maximum humidity coincides with one of the ITCZ in most areas. One exception is the western and central Pacific, where the area is dominated by the double ITCZ in boreal winter. Nevertheless, the new method enables us to gain more insight into the humidity distribution, its variability and the relationship to ITCZ characteristics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE We sought to evaluate potential reasons given by board-certified doctors for the persistence of adverse events despite efforts to improve patient safety in Switzerland. SUMMARY BACKGROUND DATA In recent years, substantial efforts have been made to improve patient safety by introducing surgical safety checklists to standardise surgeries and team procedures. Still, a high number of adverse events remain. METHODS Clinic directors in operative medicine in Switzerland were asked to answer two questions concerning the reasons for persistence of adverse events, and the advantages and disadvantages of introducing and implementing surgical safety checklists. Of 799 clinic directors, the arguments of 237 (29.7%) were content-analysed using Mayring's content analysis method, resulting in 12 different categories. RESULTS Potential reasons for the persistence of adverse events were mainly seen as being related to the "individual" (126/237, 53.2%), but directors of high-volume clinics identified factors related to the "group and interactions" significantly more often as a reason (60.2% vs 40.2%; p = 0.003). Surgical safety checklists were thought to have positive effects on the "organisational level" (47/237, 19.8%), the "team level" (37/237, 15.6%) and the "patient level" (40/237, 16.9%), with a "lack of willingness to implement checklists" as the main disadvantage (34/237, 14.3%). CONCLUSION This qualitative study revealed the individual as the main player in the persistence of adverse events. Working conditions should be optimised to minimise interface problems in the case of cross-covering of patients, to assure support for students, residents and interns, and to reduce strain. Checklists are helpful on an "organisational level" (e.g., financial benefits, quality assurance) and to clarify responsibilities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sound speed as a diagnostic marker for various diseases of human tissue has been of interest for a while. Up to now, mostly transmission ultrasound computed tomography (UCT) was able to detect spatially resolved sound speed, and its promise as a diagnostic tool has been demonstrated. However, UCT is limited to acoustically transparent samples such as the breast. We present a novel technique where spatially resolved detection of sound speed can be achieved using conventional pulse-echo equipment in reflection mode. For this purpose, pulse-echo images are acquired under various transmit beam directions and a two-dimensional map of the sound speed is reconstructed from the changing phase of local echoes using a direct reconstruction method. Phantom results demonstrate that a high spatial resolution (1 mm) and contrast (0.5 % of average sound speed) can be achieved suitable for diagnostic purposes. In comparison to previous reflection-mode based methods, CUTE works also in a situation with only diffuse echoes, and its direct reconstruction algorithm enables real-time application. This makes it suitable as an addition to conventional clinical ultrasound where it has the potential to benefit diagnosis in a multimodal approach. In addition, knowledge of the spatial distribution of sound speed allows full aberration correction and thus improved spatial resolution and contrast of conventional B-mode ultrasound. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four Staphylococcus aureus-Escherichia coli shuttle vectors were constructed for gene expression and production of tagged fusion proteins. Vectors pBUS1-HC and pTSSCm have no promoter upstream of the multiple cloning site (MCS), and this allows study of genes under the control of their native promoters, and pBUS1-Pcap-HC and pTSSCm-Pcap contain the strong constitutive promoter of S. aureus type 1 capsule gene 1A (Pcap) upstream of a novel MCS harboring codons for the peptide tag Arg-Gly-Ser-hexa-His (rgs-his6). All plasmids contained the backbone derived from pBUS1, including the E. coli origin ColE1, five copies of terminator rrnB T1, and tetracycline resistance marker tet(L) for S. aureus and E. coli. The minimum pAMα1 replicon from pBUS1 was improved through either complementation with the single-strand origin oriL from pUB110 (pBUS1-HC and pBUS1-Pcap-HC) or substitution with a pT181-family replicon (pTSSCm and pTSSCm-Pcap). The new constructs displayed increased plasmid yield and segregational stability in S. aureus. Furthermore, pBUS1-Pcap-HC and pTSSCm-Pcap offer the potential to generate C-terminal RGS-His6 translational fusions of cloned genes using simple molecular manipulation. BcgI-induced DNA excision followed by religation converts the TGA stop codon of the MCS into a TGC codon and links the rgs-his6 codons to the 3' end of the target gene. The generation of the rgs-his6 codon-fusion, gene expression, and protein purification were demonstrated in both S. aureus and E. coli using the macrolide-lincosamide-streptogramin B resistance gene erm(44) inserted downstream of Pcap. The new His tag expression system represents a helpful tool for the direct analysis of target gene function in staphylococcal cells.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Progress toward elucidating the 3D structures of eukaryotic membrane proteins has been hampered by the lack of appropriate expression systems. Recent work using the Xenopus oocyte as a novel expression system for structural analysis demonstrates the capability of providing not only the significant amount of protein yields required for structural work but also the expression of eukaryotic membrane proteins in a more native and functional conformation. There is a long history using the oocyte expression system as an efficient tool for membrane transporter and channel expression in direct functional analysis, but improvements in robotic injection systems and protein yield optimization allow the rapid scalability of expressed proteins to be purified and characterized in physiologically relevant structural states. Traditional overexpression systems (yeast, bacteria, and insect cells) by comparison require chaotropic conditions over several steps for extraction, solubilization, and purification. By contrast, overexpressing within the oocyte system for subsequent negative-staining transmission electron microscopy studies provides a single system that can functionally assess and purify eukaryotic membrane proteins in fewer steps maintaining the physiological properties of the membrane protein.