95 resultados para Dermatitis by contact
Resumo:
BACKGROUND: Continual surveillance based on patch test results has proved useful for the identification of contact allergy. OBJECTIVES: To provide a current view on the spectrum of contact allergy to important sensitizers across Europe. PATIENTS/METHODS: Clinical and patch test data of 19 793 patients patch tested in 2005/2006 in the 31 participating departments from 10 European countries (the European Surveillance System on Contact Allergies' (ESSCA) www.essca-dc.org) were descriptively analysed, aggregated to four European regions. RESULTS: Nickel sulfate remains the most common allergen with standardized prevalences ranging from 19.7% (central Europe) to 24.4% (southern Europe). While a number of allergens shows limited variation across the four regions, such as Myroxylon pereirae (5.3-6.8%), cobalt chloride (6.2-8.8%) or thiuram mix (1.7-2.4%), the differences observed with other allergens may hint on underlying differences in exposures, for example: dichromate 2.4% in the UK (west) versus 4.5-5.9% in the remaining EU regions, methylchloroisothiazolinone/methylisothiazolinone 4.1% in the South versus 2.1-2.7% in the remaining regions. CONCLUSIONS: Notwithstanding residual methodological variation (affecting at least some 'difficult' allergens) tackled by ongoing efforts for standardization, a comparative analysis as presented provides (i) a broad overview on contact allergy frequencies and (ii) interesting starting points for further, in-depth investigation.
Resumo:
Irritant contact dermatitis is a result of activated innate immune response to various external stimuli and consists of complex interplay which involves skin barrier disruption, cellular changes, and release of proinflammatory mediators. In this review, we will focus on key cytokines and chemokines involved in the pathogenesis of irritant contact dermatitis and also contrast the differences between allergic contact dermatitis and irritant contact dermatitis.
Resumo:
In modern medico-legal literature, only a small number of publications deal with fatal injuries from black powder guns. Most of them focus on the morphological features such as intense soot soiling, blast tattooing and burn effects in close-range shots or describe the wound ballistics of spherical lead bullets. Another kind of "unusual" and potentially lethal weapons are handguns destined for firing only blank cartridges such as starter and alarm pistols. The dangerousness of these guns is restricted to very close and contact range shots and results from the gas jet produced by the deflagration of the propellant. The present paper reports on a suicide committed with a muzzle-loading percussion pistol cal. 45. An unusually large stellate entrance wound was located in the precordial region, accompanied by an imprint mark from the ramrod and a faint greenish discoloration (apparently due to the formation of sulfhemoglobin). Autopsy revealed an oversized powder cavity, multiple fractures of the anterior thoracic wall as well as ruptures of the heart, the aorta, the left hepatic lobe and the diaphragm. In total, the zone of mechanical destruction had a diameter of approx. 15 cm. As there was no exit wound and no bullet lodged in the body, the injury was caused exclusively by the inrushing combustion gases of the propellant (black powder) comparable with the gas jet of a blank cartridge gun. In contact shots to ballistic gelatine using the suicide's pistol loaded with black powder but no projectile, the formation of a nearly spherical cavity could be demonstrated by means of a high-speed camera. The extent of the temporary cavity after firing with 5 g of black powder roughly corresponded to the zone of destruction found in the suicide's body.
Resumo:
The description of seized illicit ecstasy tablets and other pressed drug products is an important step in casework. The physical and visual analysis and the description of the characteristics can be employed for intelligence purposes. Besides photography and manual measurements of dimensions, some optical instruments are employed for detailed measurements of physical characteristics. In this work, the method of 3D surface digitizing is introduced as a suitable tool for highly accurate documentation of small objects, especially for pressed drug products. The resulting detailed information about the geometry, and the results of an automatic comparison of apparently uniform tablets and coins with punches, can support drug intelligence.
Resumo:
Background During production and processing of multi-walled carbon nanotubes (MWCNTs), they may be inhaled and may enter the pulmonary circulation. It is essential that interactions with involved body fluids like the pulmonary surfactant, the blood and others are investigated, particularly as these interactions could lead to coating of the tubes and may affect their chemical and physical characteristics. The aim of this study was to characterize the possible coatings of different functionalized MWCNTs in a cell free environment. Results To simulate the first contact in the lung, the tubes were coated with pulmonary surfactant and subsequently bound lipids were characterized. The further coating in the blood circulation was simulated by incubating the tubes in blood plasma. MWCNTs were amino (NH2)- and carboxyl (-COOH)-modified, in order to investigate the influence on the bound lipid and protein patterns. It was shown that surfactant lipids bind unspecifically to different functionalized MWCNTs, in contrast to the blood plasma proteins which showed characteristic binding patterns. Patterns of bound surfactant lipids were altered after a subsequent incubation in blood plasma. In addition, it was found that bound plasma protein patterns were altered when MWCNTs were previously coated with pulmonary surfactant. Conclusions A pulmonary surfactant coating and the functionalization of MWCNTs have both the potential to alter the MWCNTs blood plasma protein coating and to determine their properties and behaviour in biological systems.
Resumo:
Interaction between differentiating neurons and the extracellular environment guides the establishment of cell polarity during nervous system development. Developing neurons read the physical properties of the local substrate in a contact-dependent manner and retrieve essential guidance cues. In previous works we demonstrated that PC12 cell interaction with nanogratings (alternating lines of ridges and grooves of submicron size) promotes bipolarity and alignment to the substrate topography. Here, we investigate the role of focal adhesions, cell contractility, and actin dynamics in this process. Exploiting nanoimprint lithography techniques and a cyclic olefin copolymer, we engineered biocompatible nanostructured substrates designed for high-resolution live-cell microscopy. Our results reveal that neuronal polarization and contact guidance are based on a geometrical constraint of focal adhesions resulting in an angular modulation of their maturation and persistence. We report on ROCK1/2-myosin-II pathway activity and demonstrate that ROCK-mediated contractility contributes to polarity selection during neuronal differentiation. Importantly, the selection process confined the generation of actin-supported membrane protrusions and the initiation of new neurites at the poles. Maintenance of the established polarity was independent from NGF stimulation. Altogether our results imply that focal adhesions and cell contractility stably link the topographical configuration of the extracellular environment to a corresponding neuronal polarity state.
Resumo:
In contact shots, all the materials emerging from the muzzle (combustion gases, soot, powder grains, and metals from the primer) will be driven into the depth of the entrance wound and the following sections of the bullet track. The so-called "pocket" ("powder cavity") under the skin containing soot and gunpowder particles is regarded as a significant indicator of a contact entrance wound since one would expect that the quantity of GSR deposited along the bullet's path rapidly declines towards the exit hole. Nevertheless, experience has shown that soot, powder particles, and carboxyhemoglobin may be found not only in the initial part of the wound channel, but also far away from the entrance and even at the exit. In order to investigate the propagation of GSRs under standardized conditions, contact test shots were fired against composite models of pig skin and 25-cm-long gelatin blocks using 9-mm Luger pistol cartridges with two different primers (Sinoxid® and Sintox®). Subsequently, 1-cm-thick layers of the gelatin blocks were examined as to their primer element contents (lead, barium, and antimony as discharge residues of Sinoxid® as well as zinc and titanium from Sintox®) by means of X-ray fluorescence spectroscopy. As expected, the highest element concentrations were found in the initial parts of the bullet tracks, but also the distal sections contained detectable amounts of the respective primer elements. The same was true for amorphous soot and unburned/partly burned powder particles, which could be demonstrated even at the exit site. With the help of a high-speed motion camera it was shown that for a short time the temporary cavitation extends from the entrance to the exit thus facilitating the unlimited spread of discharge residues along the whole bullet path.
Resumo:
The presynaptic terminal contains a complex network of filaments whose precise organization and functions are not yet understood. The cryoelectron tomography experiments reported in this study indicate that these structures play a prominent role in synaptic vesicle release. Docked synaptic vesicles did not make membrane to membrane contact with the active zone but were instead linked to it by tethers of different length. Our observations are consistent with an exocytosis model in which vesicles are first anchored by long (>5 nm) tethers that give way to multiple short tethers once vesicles enter the readily releasable pool. The formation of short tethers was inhibited by tetanus toxin, indicating that it depends on soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor complex assembly. Vesicles were extensively interlinked via a set of connectors that underwent profound rearrangements upon synaptic stimulation and okadaic acid treatment, suggesting a role of these connectors in synaptic vesicle mobilization and neurotransmitter release.
Resumo:
Cultured fibroblasts adhere to extracellular substrates by means of cell-matrix adhesions that are assembled in a hierarchical way, thereby gaining in protein complexity and size. Here we asked how restricting the size of cell-matrix adhesions affects cell morphology and behavior. Using a nanostencil technique, culture substrates were patterned with gold squares of a width and spacing between 250 nm and 2 µm. The gold was functionalized with RGD peptide as ligand for cellular integrins, and mouse embryo fibroblasts were plated. Limiting the length of cell-matrix adhesions to 500 nm or less disturbed the maturation of vinculin-positive focal complexes into focal contacts and fibrillar adhesions, as indicated by poor recruitment of ?5-integrin. We found that on sub-micrometer patterns, fibroblasts spread extensively, but did not polarize. Instead, they formed excessive numbers of lamellipodia and a fine actin meshwork without stress fibers. Moreover, these cells showed aberrant fibronectin fibrillogenesis, and their speed of directed migration was reduced significantly compared to fibroblasts on 2 µm square patterns. Interference with RhoA/ROCK signaling eliminated the pattern-dependent differences in cell morphology. Our results indicate that manipulating the maturation of cell-matrix adhesions by nanopatterned surfaces allows to influence morphology, actin dynamics, migration and ECM assembly of adhering fibroblasts.
Resumo:
BACKGROund: Patient-oriented medicine is an emerging concept, encouraged by the World Health Organization, to greater involvement of the patient in the management of chronic diseases. The Patient-Oriented SCORing Atopic Dermatitis (PO-SCORAD) index is a self-assessment score allowing the patient to comprehensively evaluate the actual course of atopic dermatitis (AD), using subjective and objective criteria derived mainly from the SCORAD, a validated AD severity clinical assessment tool.
Resumo:
OBJECTIVE: To assess patterns of seroreactivity to Leptospira serovars in veterinary professional staff and dog owners exposed to dogs with acute leptospirosis and to contrast these patterns in people with those observed in dogs. DESIGN: Cross-sectional study. SAMPLE POPULATION: Human subjects consisted of 91 people (50 veterinarians, 19 technical staff, 9 administrative personnel, and 13 dog owners) exposed to dogs with leptospirosis. Canine subjects consisted of 52 dogs with naturally occurring leptospirosis admitted to the University of Bern Vetsuisse Faculty Small Animal Clinic in 2007 and 2008. PROCEDURES: People were tested for seroreactivity to regionally prevalent Leptospira serovars by use of a complement fixation test. A questionnaire designed to identify risk factors associated with seropositivity was used to collect demographic information from each study participant. Dogs were tested for seroreactivity to Leptospira serovars by use of a microscopic agglutination test. RESULTS: On the basis of microscopic agglutination test results, infected dogs were seropositive for antibodies against Leptospira serovars as follows (in descending order): Bratislava (43/52 [83%]), Australis (43/52 [83%]), Grippotyphosa (18/52 [35%]), Pomona (12/52 [23%]), Autumnalis (6/52 [12%]), Icterohemorrhagiae (4/52 [8%]), Tarassovi (2/52 [4%]), and Canicola (1/52 [2%]). All 91 people were seronegative for antibodies against Leptospira serovars. Therefore, statistical evaluation of risk factors and comparison of patterns of seroreactivity to Leptospira serovars between human and canine subjects were limited to theoretical risks. CONCLUSIONS AND CLINICAL RELEVANCE: Seroreactivity to Leptospira serovars among veterinary staff adhering to standard hygiene protocols and pet owners exposed to dogs with acute leptospirosis was uncommon.
Resumo:
Hypersensitivity dermatitides (HD) are commonly seen in cats, and they are usually caused by environmental, food and/or flea allergens. Affected cats normally present with one of the following clinical reaction patterns: head and neck excoriations, usually symmetrical self-induced alopecia, eosinophilic skin lesions or miliary dermatitis. Importantly, none of these clinical presentations is considered to be pathognomonic for HD skin diseases, and the diagnosis of HD is usually based on the exclusion of other pruritic diseases and on a positive response to therapy. The objectives of this study were to propose sets of criteria for the diagnosis of nonflea-induced HD (NFHD). We recruited 501 cats with pruritus and skin lesions and compared clinical parameters between cats with NFHD (encompassing those with nonflea, nonfood HD and those with food HD), flea HD and other pruritic conditions. Using simulated annealing techniques, we established two sets of proposed criteria for the following two different clinical situations: (i) the diagnosis of NFHD in a population of pruritic cats; and (ii) the diagnosis of NFHD after exclusion of cats with flea HD. These criteria sets were associated with good sensitivity and specificity and may be useful for homogeneity of enrolment in clinical trials and to evaluate the probability of diagnosis of NFHD in clinical practice. Finally, these criteria were not useful to differentiate cats with NFHD from those with food HD.
Resumo:
Canine and human atopic dermatitis are multifaceted diseases whose clinical development may be influenced by several factors, such as genetic background, environment, secondary infections, food and psychological effects. The role of the environment has been extensively examined in humans but remains unclear in dogs. The aim of this study was to examine environmental factors in two genetically close breeds, Labrador and golden retrievers. Using standard criteria, atopic dogs in Switzerland and Germany were selected and compared with healthy individuals. Information on environmental factors was collected using a 46-question survey encompassing date and place of birth, way of life at the breeder's and owner's home, food and treatments. Univariate and multivariate logistic regression were used to assess the association between potential risk factors and disease status. The following parameters were associated with an increased risk of disease development: living in a shed during puppyhood, adoption at the age of 8-12 weeks and washing the dog regularly. In contrast, the following factors were associated with a lower risk: living in a rural environment, living in a household with other animals and walking in a forest. These associations do not prove causality but support the primary hypothesis that certain environmental factors may influence the development of canine atopic dermatitis. Further studies are warranted to confirm these results and conclusions.