92 resultados para Decision-making processes
Resumo:
Self-control is defined as the process in which thoughts, emotions, or prepotent responses are inhibited to efficiently enact a more focal goal. Self-control not only allows for more adaptive individual decision making but also promotes adaptive social decision making. In this chapter, we examine a burgeoning area of interdisciplinary research: the neuroscience of self-control in social decision making. We examine research on self-control in complex social contexts examined from a social neuroscience perspective. We review correlational evidence from neuroimaging studies and causal evidence from neuromodulation studies (i.e., brain stimulation). We specifically highlight research that shows that self-control involves the lateral prefrontal cortex (PFC) across a number of social domains and behaviors. Research has also begun to directly integrate nonsocial with social forms of self-control, showing that the basic neurobiological processes involved in stopping a motor response appear to be involved in social contexts that require self-control. Further, neural traits, such as baseline activation in the lateral PFC, can explain sources of individual differences in self-control capacity. We explore whether techniques that change brain functioning could target neural mechanisms related to self-control capacity to potentially enhance self-control in social behavior. Finally, we discuss several research questions ripe for examination. We broadly suggest that future research can now turn to exploring how neural traits and situational affordances interact to impact self-control in social decision making in order to continue to elucidate the processes that allow people to maintain and realize stable goals in a dynamic and often uncertain social environment.
Resumo:
The previous chapter uncovered important differences between decision-making structures across the 11 processes investigated by this study. As we have noted, both historically and in much contemporary literature, the Swiss political system has been described as highly consensual. And yet, when we focus on differences between decision-making structures across different policy domains, important elements appear that point toward a more conflictual style of decision-making. Both when there is a power balance between coalitions and in the presence of a dominant coalition, coalition interactions are conflictual in the majority of cases. Based on the descriptive account of these differences in Chapter 4, the present chapter studies the conditions under which given decision-making structures emerge. Under which circumstances are actors able to form a dominant coalition, and which conditions lead to a situation where power is more evenly balanced between coalitions? Which conditions lead actors to develop a conflictual rather than a consensual type of interaction? Answering these questions can give us some indication of the factors responsible for different types of decision-making structures.
Resumo:
During the last 10 years several molecular markers have been established as useful tools among the armamentarium of a hematologist. As a consequence, the number of performed hematologic molecular analyses has immensely increased. Often, such tests replace or complement other laboratory methods. Molecular markers can be useful in many ways: they can serve for diagnostics, describe the prognostic profile, predict which types of drugs are indicated, and can be used for the therapeutic monitoring of the patient to indicate an adequate response or predict resistance or relapse of the disease. Many markers fulfill more than one of these aspects. Most important, however, is the right choice of analyses at the right time-points!
Resumo:
Shared Decision Making (SDM) is widely accepted as the preferred method for reaching treatment decisions in the oncology setting including those about clinical trial participation: however, there is some disagreement between researchers over the components of SDM. Specific standardized coding systems are needed to help overcome this difficulty.
Resumo:
To investigate how involvement preferences of patients with breast cancer change during the treatment decision-making process and determine the impact of meeting patients' expectations on decision-making outcomes.
Resumo:
INTRODUCTION: Guidelines for the treatment of patients in severe hypothermia and mainly in hypothermic cardiac arrest recommend the rewarming using the extracorporeal circulation (ECC). However,guidelines for the further in-hospital diagnostic and therapeutic approach of these patients, who often suffer from additional injuries—especially in avalanche casualties, are lacking. Lack of such algorithms may relevantly delay treatment and put patients at further risk. Together with a multidisciplinary team, the Emergency Department at the University Hospital in Bern, a level I trauma centre, created an algorithm for the in-hospital treatment of patients with hypothermic cardiac arrest. This algorithm primarily focuses on the decision-making process for the administration of ECC. THE BERNESE HYPOTHERMIA ALGORITHM: The major difference between the traditional approach, where all hypothermic patients are primarily admitted to the emergency centre, and our new algorithm is that hypothermic cardiac arrest patients without obvious signs of severe trauma are taken to the operating theatre without delay. Subsequently, the interdisciplinary team decides whether to rewarm the patient using ECC based on a standard clinical trauma assessment, serum potassium levels, core body temperature, sonographic examinations of the abdomen, pleural space, and pericardium, as well as a pelvic X-ray, if needed. During ECC, sonography is repeated and haemodynamic function as well as haemoglobin levels are regularly monitored. Standard radiological investigations according to the local multiple trauma protocol are performed only after ECC. Transfer to the intensive care unit, where mild therapeutic hypothermia is maintained for another 12 h, should not be delayed by additional X-rays for minor injuries. DISCUSSION: The presented algorithm is intended to facilitate in-hospital decision-making and shorten the door-to-reperfusion time for patients with hypothermic cardiac arrest. It was the result of intensive collaboration between different specialties and highlights the importance of high-quality teamwork for rare cases of severe accidental hypothermia. Information derived from the new International Hypothermia Registry will help to answer open questions and further optimize the algorithm.