36 resultados para Dawn of the Planet of the Apes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asteroid 4Vesta seems to be a major intact protoplanet, with a surface composition similar to that of the HED (howardite-eucrite-diogenite) meteorites. The southern hemisphere is dominated by a giant impact scar, but previous impact models have failed to reproduce the observed topography. The recent discovery that Vesta's southern hemisphere is dominated by two overlapping basins provides an opportunity to model Vesta's topography more accurately. Here we report three-dimensional simulations of Vesta's global evolution under two overlapping planet-scale collisions. We closely reproduce its observed shape, and provide maps of impact excavation and ejecta deposition. Spiral patterns observed in the younger basin Rheasilvia, about one billion years old, are attributed to Coriolis forces during crater collapse. Surface materials exposed in the north come from a depth of about 20kilometres, according to our models, whereas materials exposed inside the southern double-excavation come from depths of about 60-100kilometres. If Vesta began as a layered, completely differentiated protoplanet, then our model predicts large areas of pure diogenites and olivine-rich rocks. These are not seen, possibly implying that the outer 100kilometres or so of Vesta is composed mainly of a basaltic crust (eucrites) with ultramafic intrusions (diogenites).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. Direct observations of gaseous exoplanets reveal that their gas envelope has a higher C/O ratio than that of the host star (e.g., Wasp 12-b). This has been explained by considering that the gas phase of the disc could be inhomogeneous, exceeding the stellar C/O ratio in regions where these planets formed; but few studies have considered the drift of the gas and planet migration. Aims. We aim to derive the gas composition in planets through planet formation to evaluate if the formation of giant planets with an enriched C/O ratio is possible. The study focusses on the effects of different processes on the C/O ratio, such as the disc evolution, the drift of gas, and planet migration. Methods. We used our previous models for computing the chemical composition, together with a planet formation model, to which we added the composition and drift of the gas phase of the disc, which is composed of the main volatile species H2O, CO, CO2, NH3, N2, CH3OH, CH4, and H2S, H2 and He. The study focusses on the region where ice lines are present and influence the C/O ratio of the planets. Results. Modelling shows that the condensation of volatile species as a function of radial distance allows for C/O enrichment in specific parts of the protoplanetary disc of up to four times the solar value. This leads to the formation of planets that can be enriched in C/O in their envelope up to three times the solar value. Planet migration, gas phase evolution and disc irradiation enables the evolution of the initial C/O ratio that decreases in the outer part of the disc and increases in the inner part of the disc. The total C/O ratio of the planets is governed by the contribution of ices accreted, suggesting that high C/O ratios measured in planetary atmospheres are indicative of a lack of exchange of material between the core of a planet and its envelope or an observational bias. It also suggests that the observed C/O ratio is not representative of the total C/O ratio of the planet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. We explore the possibility that the stellar relative abundances of different species can be used to constrain the bulk abundances of known transiting rocky planets. Methods. We use high resolution spectra to derive stellar parameters and chemical abundances for Fe, Si, Mg, O, and C in three stars hosting low mass, rocky planets: CoRoT-7, Kepler-10, and Kepler-93. These planets follow the same line along the mass-radius diagram, pointing toward a similar composition. The derived abundance ratios are compared with the solar values. With a simple stoichiometric model, we estimate the iron mass fraction in each planet, assuming stellar composition. Results. We show that in all cases, the iron mass fraction inferred from the mass-radius relationship seems to be in good agreement with the iron abundance derived from the host star's photospheric composition. Conclusions. The results suggest that stellar abundances can be used to add constraints on the composition of orbiting rocky planets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using the high-resolution, 3D chemistry climate model CESM1(WACCM) and study how the ozone layer of a tidally locked Earth (TLE) (ΩTLE = 1/365 days) differs from that of our present-day Earth (PDE) (ΩPDE = 1/1 day). The middle atmosphere reaches a steady state a symptotically within the first 80 days of the simulation. An upwelling, centred on the subsolar point, is present on the day side while a downwelling, centred on the antisolar point, is present on the night side. In the mesosphere, we find similar global ozone distributions for the TLE and the PDE, with decreased ozone on the day side and enhanced ozone on the night side. In the lower mesosphere, a jet stream transitions into a large-scale vortex around a low-pressure system, located at low latitudes of the TLE night side. In the middle stratosphere, the concentration of odd oxygen is approximately equal to that of the ozone [(Ox) ≈ (O3)]. At these altitudes, the lifetime of odd oxygen is ~16 h and the transport processes significantly contribute to the global distribution of stratospheric ozone. Compared to the PDE, where the strong Coriolis force acts as a mixing barrier between low and high latitudes, the transport processes of the TLE are governed by jet streams variable in the zonal and meridional directions. In the middle stratosphere of the TLE, we find high ozone values on the day side, due to the increased production of atomic oxygen on the day side, where it immediately recombines with molecular oxygen to form ozone. In contrast, the ozone is depleted on the night side, due to changes in the solar radiation distribution and the presence of a downwelling. As a result of the reduced Coriolis force, the tropical and extratropical air masses are well mixed and the global temperature distribution of the TLE stratosphere has smaller horizontal gradients than the PDE. Compared to the PDE, the total ozone column global mean is reduced by ~19.3 %. The day side and the night side total ozone column means are reduced by 23.21 and 15.52 %, respectively. Finally, we present the total ozone column (TOC) maps as viewed by a remote observer for four phases of the TLE during its revolution around the star. The mean TOC values of the four phases of the TLE vary by up to 23 %.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The spectacular images of Comet 103P/Hartley 2 recorded by the Medium Resolution Instrument (MRI) and High Resolution Instrument (HRI) on board of the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) spacecraft, as the Deep Impact extended mission, revealed that its bi-lobed very active nucleus outgasses volatiles heterogeneously. Indeed, CO2 is the primary driver of activity by dragging out chunks of pure ice out of the nucleus from the sub-solar lobe that appear to be the main source of water in Hartley 2's coma by sublimating slowly as they go away from the nucleus. However, water vapor is released by direct sublimation of the nucleus at the waist without any significant amount of either CO2 or icy grains. The coma structure for a comet with such areas of diverse chemistry differs from the usual models where gases are produced in a homogeneous way from the surface. We use the fully kinetic Direct Simulation Monte Carlo model of Tenishev et al. (Tenishev, V.M., Combi, M.R., Davidsson, B. [2008]. Astrophys. J. 685, 659-677; Tenishev, V.M., Combi, M.R., Rubin, M. [2011]. Astrophys. J. 732, 104-120) applied to Comet 103P/Hartley 2 including sublimating icy grains to reproduce the observations made by EPOXI and ground-based measurements. A realistic bi-lobed nucleus with a succession of active areas with different chemistry was included in the model enabling us to study in details the coma of Hartley 2. The different gas production rates from each area were found by fitting the spectra computed using a line-by-line non-LTE radiative transfer model to the HRI observations. The presence of icy grains with long lifetimes, which are pushed anti-sunward by radiation pressure, explains the observed OH asymmetry with enhancement on the night side of the coma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A scientific forum on “The Future Science of Exoplanets and Their Systems,” sponsored by Europlanet* and the International Space Science Institute (ISSI)† and co-organized by the Center for Space and Habitability (CSH)‡ of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history. Several important and timely research areas of focus for further research efforts in the field were identified by the forum participants. These scientific topics are related to the origin and formation of water and its delivery to planetary bodies and the role of the disk in relation to planet formation, including constraints from observations as well as star-planet interaction processes and their consequences for atmosphere-magnetosphere environments, evolution, and habitability. The relevance of these research areas is outlined in this report, and possible themes for future ISSI workshops are identified that may be proposed by the international research community over the coming 2–3 years.