49 resultados para Data Acquisition Methods.
Resumo:
Because of superior soft-tissue contrast compared to other imaging techniques, non-invasive abdominal magnetic resonance imaging (MRI) is ideal for monitoring organ regeneration, tissue repair, cancer stage, and treatment effects in a wide variety of experimental animal models. Currently, sophisticated MR protocols, including technically demanding procedures for motion artefact compensation, achieve an MRI resolution limit of < 100 microm under ideal conditions. However, such a high spatial resolution is not required for most experimental rodent studies. This article describes both a detailed imaging protocol for MR data acquisition in a ubiquitously and commercially available 1.5 T MR unit and 3-dimensional volumetry of organs, tissue components, or tumors. Future developments in MR technology will allow in vivo investigation of physiological and pathological processes at the cellular and even the molecular levels. Experimental MRI is crucial for non-invasive monitoring of a broad range of biological processes and will further our general understanding of physiology and disease.
Resumo:
OBJECTIVES: To assess magnetic resonance (MR)-colonography (MRC) for detection of colorectal lesions using two different T1w three-dimensional (3D)-gradient-recalled echo (GRE)-sequences and integrated parallel data acquisition (iPAT) at a 3.0 Tesla MR-unit. MATERIALS AND METHODS: In this prospective study, 34 symptomatic patients underwent dark lumen MRC at a 3.0 Tesla unit before conventional colonoscopy (CC). After colon distension with tap water, 2 high-resolution T1w 3D-GRE [3-dimensional fast low angle shot (3D-FLASH), iPAT factor 2 and 3D-volumetric interpolated breathhold examination (VIBE), iPAT 3] sequences were acquired without and after bolus injection of gadolinium. Prospective evaluation of MRC was performed. Image quality of the different sequences was assessed qualitatively and quantitatively. The findings of the same day CC served as standard of reference. RESULTS: MRC identified all polyps >5 mm (16 of 16) in size and all carcinomas (4 of 4) correctly. Fifty percent of the small polyps =5 mm (4 of 8) were visualized by MRC. Diagnostic quality was excellent in 94% (384 of 408 colonic segments) using the 3D-FLASH and in 92% (376 of 408) for the VIBE. The 3D-FLASH sequence showed a 3-fold increase in signal-to-noise ratio (8 +/- 3.3 standard deviation (SD) in lesions without contrast enhancement (CE); 24.3 +/- 7.8 SD after CE). For the 3D-VIBE sequence, signal-to-noise ratio doubled in the detected lesions (147 +/- 54 SD without and 292 +/- 168 SD after CE). Although image quality was ranked lower in the VIBE, the image quality score of both sequences showed no statistical significant difference (chi > 0.6). CONCLUSIONS: MRC using 3D-GRE-sequences and iPAT is feasible at 3.0 T-systems. The high-resolution 3D-FLASH was slightly preferred over the 3D-VIBE because of better image quality, although both used sequences showed no statistical significant difference.
Resumo:
Data assimilation methods used for transient atmospheric state estimations in paleoclimatology such as covariance-based approaches, analogue techniques and nudging are briefly introduced. With applications differing widely, a plurality of approaches appears to be the logical way forward.
Resumo:
Localized short-echo-time (1)H-MR spectra of human brain contain contributions of many low-molecular-weight metabolites and baseline contributions of macromolecules. Two approaches to model such spectra are compared and the data acquisition sequence, optimized for reproducibility, is presented. Modeling relies on prior knowledge constraints and linear combination of metabolite spectra. Investigated was what can be gained by basis parameterization, i.e., description of basis spectra as sums of parametric lineshapes. Effects of basis composition and addition of experimentally measured macromolecular baselines were investigated also. Both fitting methods yielded quantitatively similar values, model deviations, error estimates, and reproducibility in the evaluation of 64 spectra of human gray and white matter from 40 subjects. Major advantages of parameterized basis functions are the possibilities to evaluate fitting parameters separately, to treat subgroup spectra as independent moieties, and to incorporate deviations from straightforward metabolite models. It was found that most of the 22 basis metabolites used may provide meaningful data when comparing patient cohorts. In individual spectra, sums of closely related metabolites are often more meaningful. Inclusion of a macromolecular basis component leads to relatively small, but significantly different tissue content for most metabolites. It provides a means to quantitate baseline contributions that may contain crucial clinical information.
Resumo:
This paper presents problems arising from the lack of standardized methods for recording skeletal remains. Using practical examples it is shown how preservation and representation of bones can distort observations and how this can be reduced by systematic data acquisition.
Resumo:
OBJECTIVE The objective of this study was to assess the discriminative power of dual-energy computed tomography (DECT) versus single-energy CT (SECT) to distinguish between ferromagnetic and non-ferromagnetic ballistic projectiles to improve safety regarding magnetic resonance (MR) imaging studies in patients with retained projectiles. MATERIALS AND METHODS Twenty-seven ballistic projectiles including 25 bullets (diameter, 3-15 mm) and 2 shotgun pellets (2 mm each) were examined in an anthropomorphic chest phantom using 128-section dual-source CT. Data acquisition was performed with tube voltages set at 80, 100, 120, and 140 kV(p). Two readers independently assessed CT numbers of the projectile's core on images reconstructed with an extended CT scale. Dual-energy indices (DEIs) were calculated from both 80-/140-kV(p) and 100-/140-kV(p) pairs; receiver operating characteristics curves were fitted to assess ferromagnetic properties by means of CT numbers and DEI. RESULTS Nine (33%) of the projectiles were ferromagnetic; 18 were nonferromagnetic (67%). Interreader and intrareader correlations of CT number measurements were excellent (intraclass correlation coefficients, >0.906; P<0.001). The DEI calculated from both 80/140 and 100/140 kV(p) were significantly (P<0.05) different between the ferromagnetic and non-ferromagnetic projectiles. The area under the curve (AUC) was 0.75 and 0.8 for the tube voltage pairs of 80/140 and 100/140 kV(p) (P<0.05; 95% confidence interval, 0.57-0.94 and 0.62-0.97, respectively) to differentiate between the ferromagnetic and non-ferromagnetic ballistic projectiles; which increased to 0.83 and 0.85 when shotgun pellets were excluded from the analysis. The AUC for SECT was 0.69 and 0.73 (80 and 100 kV[p], respectively). CONCLUSIONS Measurements of DECT combined with an extended CT scale allow for the discrimination of projectiles with non-ferromagnetic from those with ferromagnetic properties in an anthropomorphic chest phantom with a higher AUC compared with SECT. This study indicates that DECT may have the potential to contribute to MR safety and allow for MR imaging of patients with retained projectiles. However, further studies are necessary before this concept may be used to triage clinical patients before MR.
Resumo:
PRINCIPLES Thyroidectomy in children is rare and mostly performed because of thyroid neoplasms. The aim of this study based on prospective data acquisition was to evaluate whether thyroid surgery in children can be performed as safely as in adults when undertaken by a team of adult endocrine surgeons and paediatric surgeons. METHODS Between 2002 and 2012, 36 patients younger than 18 years underwent surgery for thyroid gland pathologies. All surgical procedures were performed by an experienced endocrine surgeon and a paediatric surgeon. Baseline demographic data, surgical procedure, duration of operation, length of hospital stay, and postoperative morbidity and mortality were analysed. RESULTS The median age of all patients was 13 years (range 2-17 years), with predominantly female gender (n = 30, 83%). The majority of operations were performed because of benign thyroid disease (n = 27, 75%) and only a minority because of malignancy or genetic abnormality with predisposition for malignant transformation (MEN) (n = 9, 25%). Total thyroidectomy was performed in the majority of the patients (n = 24, 67%). The median duration of the surgical procedure was 153 minutes (range 90-310 minutes). The median hospital stay was 5 days (3-1 days). One patient developed persistent hypoparathyroidism after neck dissection due to cancer. One persistent and two temporary recurrent nerve palsies occurred. CONCLUSION This study demonstrated that paediatric thyroidectomy is safe as performed by this team of endocrine and paediatric surgeons, with acceptable morbidity even when total thyroidectomy was performed in the case of benign disease.
Resumo:
We consider the problem of nonparametric estimation of a concave regression function F. We show that the supremum distance between the least square s estimatorand F on a compact interval is typically of order(log(n)/n)2/5. This entails rates of convergence for the estimator’s derivative. Moreover, we discuss the impact of additional constraints on F such as monotonicity and pointwise bounds. Then we apply these results to the analysis of current status data, where the distribution function of the event times is assumed to be concave.
Resumo:
STUDY DESIGN Single centre retrospective study of prospectively collected data, nested within the Eurospine Spine Tango data acquisition system. OBJECTIVE The aim of this study was to assess the patient-rated outcome and complication rates associated with lumbar fusion procedures in three different age groups. SUMMARY OF BACKGROUND DATA There is a general reluctance to consider spinal fusion procedures in elderly patients due to the increased likelihood of complications. METHODS Before and at 3, 12, and 24 months after surgery, patients completed the multidimensional Core Outcome Measures Index (COMI). At the 3-, 12-, and 24-month follow-ups they also rated the Global Treatment Outcome (GTO) and their satisfaction with care. Patients were divided into three age groups: younger (≥50y < 65y; n = 317), older (≥65y < 80y; n = 350), and geriatric (≥ 80y; n = 40). RESULTS 707 consecutive patients were included. The preoperative comorbidity status differed significantly (p < 0.0001) between the age groups, with the highest scores in the geriatric group. Medical complications during surgery were lower in the younger age group (7%) than in the older (13.4%; p = 0.006) and geriatric groups (17.5%; p = 0.007); surgical complications tended to be higher in the elderly group (younger, 6.3%; older, 6.0%; geriatric, 15.0%; p = 0.09). There were no significant group differences (p > 0.05) for the scores on any of the COMI domains, GTO, or patient-rated satisfaction at either 3-, 12-, and 24-months follow-up. CONCLUSIONS Despite greater comorbidity and complication rates in geriatric patients, the patient-rated outcome was as good in the elderly as it was in younger age groups up to two years after surgery. These data indicate that geriatric age needs careful consideration of associated risks but is not per se a contraindication for fusion for lumbar degenerative disease. LEVEL OF EVIDENCE 4.
Resumo:
Since the late 1990s and early 2000s, derivatives of well-known designer drugs as well as new psychoactive compounds have been sold on the illicit drug market and have led to intoxications and fatalities. The LC-MS/MS screening method presented covers 31 new designer drugs as well as cathinone, methcathinone, phencyclidine, and ketamine which were included to complete the screening spectrum. All but the last two are modified molecular structures of amphetamine, tryptamine, or piperazine. Among the amphetamine derivatives are cathinone, methcathinone, 3,4-DMA, 2,5-DMA, DOB, DOET, DOM, ethylamphetamine, MDDMA, 4-MTA, PMA, PMMA, 3,4,5-TMA, TMA-6 and members of the 2C group: 2C-B, 2C-D, 2C-H, 2C-I, 2C-P, 2C-T-2, 2C-T-4, and 2C-T-7. AMT, DPT, DiPT, MiPT, DMT, and 5MeO-DMT are contained in the tryptamine group, BZP, MDBP, TFMPP, mCPP, and MeOPP in the piperazine group. Using an Applied Biosystems LC-MS/MS API 365 TurboIonSpray it is possible to identify all 35 substances. After addition of internal standards and mixed-mode solid-phase extraction the analytes are separated using a Synergi Polar RP column and gradient elution with 1 mM ammonium formate and methanol/0.1% formic acid as mobile phases A and B. Data acquisition is performed in MRM mode with positive electro spray ionization. The assay is selective for all tested substances. Limits of detection were determined by analyzing S/N-ratios and are between 1.0 and 5.0 ng/mL. Matrix effects lie between 65% and 118%, extraction efficiencies range from 72% to 90%.
Resumo:
Magnetic resonance spectroscopy enables insight into the chemical composition of spinal cord tissue. However, spinal cord magnetic resonance spectroscopy has rarely been applied in clinical work due to technical challenges, including strong susceptibility changes in the region and the small cord diameter, which distort the lineshape and limit the attainable signal to noise ratio. Hence, extensive signal averaging is required, which increases the likelihood of static magnetic field changes caused by subject motion (respiration, swallowing), cord motion, and scanner-induced frequency drift. To avoid incoherent signal averaging, it would be ideal to perform frequency alignment of individual free induction decays before averaging. Unfortunately, this is not possible due to the low signal to noise ratio of the metabolite peaks. In this article, frequency alignment of individual free induction decays is demonstrated to improve spectral quality by using the high signal to noise ratio water peak from non-water-suppressed proton magnetic resonance spectroscopy via the metabolite cycling technique. Electrocardiography (ECG)-triggered point resolved spectroscopy (PRESS) localization was used for data acquisition with metabolite cycling or water suppression for comparison. A significant improvement in the signal to noise ratio and decrease of the Cramér Rao lower bounds of all metabolites is attained by using metabolite cycling together with frequency alignment, as compared to water-suppressed spectra, in 13 healthy volunteers.
Resumo:
BACKGROUND: Detecting a benefit from closure of patent foramen ovale in patients with cryptogenic stroke is hampered by low rates of stroke recurrence and uncertainty about the causal role of patent foramen ovale in the index event. A method to predict patent foramen ovale-attributable recurrence risk is needed. However, individual databases generally have too few stroke recurrences to support risk modeling. Prior studies of this population have been limited by low statistical power for examining factors related to recurrence. AIMS: The aim of this study was to develop a database to support modeling of patent foramen ovale-attributable recurrence risk by combining extant data sets. METHODS: We identified investigators with extant databases including subjects with cryptogenic stroke investigated for patent foramen ovale, determined the availability and characteristics of data in each database, collaboratively specified the variables to be included in the Risk of Paradoxical Embolism database, harmonized the variables across databases, and collected new primary data when necessary and feasible. RESULTS: The Risk of Paradoxical Embolism database has individual clinical, radiologic, and echocardiographic data from 12 component databases, including subjects with cryptogenic stroke both with (n = 1925) and without (n = 1749) patent foramen ovale. In the patent foramen ovale subjects, a total of 381 outcomes (stroke, transient ischemic attack, death) occurred (median follow-up 2·2 years). While there were substantial variations in data collection between studies, there was sufficient overlap to define a common set of variables suitable for risk modeling. CONCLUSION: While individual studies are inadequate for modeling patent foramen ovale-attributable recurrence risk, collaboration between investigators has yielded a database with sufficient power to identify those patients at highest risk for a patent foramen ovale-related stroke recurrence who may have the greatest potential benefit from patent foramen ovale closure.
Resumo:
We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57′ N, 7°26′ E) is presented and compared to ECMWF wind data.
Resumo:
Functional magnetic resonance imaging (fMRI) is presently either performed using blood oxygenation level-dependent (BOLD) contrast or using cerebral blood flow (CBF), measured with arterial spin labeling (ASL) technique. The present fMRI study aimed to provide practical hints to favour one method over the other. It involved three different acquisition methods during visual checkerboard stimulation on nine healthy subjects: 1) CBF contrast obtained from ASL, 2) BOLD contrast extracted from ASL and 3) BOLD contrast from Echo planar imaging. Previous findings were replicated; i) no differences between the three measurements were found in the location of the activated region; ii) differences were found in the temporal characteristics of the signals and iii) BOLD has significantly higher sensitivity than ASL perfusion. ASL fMRI was favoured when the investigation demands for perfusion and task related signal changes. BOLD fMRI is more suitable in conjunction with fast event related design.