18 resultados para DOPA-melanin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Dopamine agonists (DAs) represent the first-line treatment in restless legs syndrome (RLS); however, in the long term, a substantial proportion of patients will develop augmentation, which is a severe drug-related exacerbation of symptoms and the main reason for late DA withdrawal. Polysomnographic features and mechanisms underlining augmentation are unknown. No practice guidelines for management of augmentation are available. METHODS: A clinical case series of 24 consecutive outpatients affected by RLS with clinically significant augmentation during treatment with immediate-release DA was performed. All patients underwent a full-night polysomnographic recording during augmentation. A switchover from immediate-release DAs (l-dopa, pramipexole, ropinirole, rotigotine) to the long-acting, extended-release formula of pramipexole was performed. RESULTS: Fifty percent of patients presented more than 15 periodic limb movements per hour of sleep during augmentation, showing longer sleep latency and shorter total sleep time than subjects without periodic limb movements. In all patients, resolution of augmentation was observed within two to four weeks during which immediate-release dopamine agonists could be completely withdrawn. Treatment efficacy of extended-release pramipexole has persisted, thus far, over a mean follow-up interval of 13 months. CONCLUSIONS: Pramipexole extended release could be an easy, safe, and fast pharmacological option to treat augmentation in patients with restless legs syndrome. As such it warrants further prospective and controlled investigations. This observation supports the hypothesis that the duration of action of the drug plays a key role in the mechanism of augmentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE People often face decisions that pit self-interested behavior aimed at maximizing personal reward against normative behavior such as acting cooperatively, which benefits others. The threat of social sanctions for defying the fairness norm prevents people from behaving overly selfish. Thus, normative behavior is influenced by both seeking rewards and avoiding punishment. However, the neurochemical processes mediating the impact of these influences remain unknown. Several lines of evidence link the dopaminergic system to reward and punishment processing, respectively, but this evidence stems from studies in non-social contexts. OBJECTIVES The present study investigates dopaminergic drug effects on individuals' reward seeking and punishment avoidance in social interaction. METHODS Two-hundred one healthy male participants were randomly assigned to receive 300 mg of L-3,4-dihydroxyphenylalanine (L-DOPA) or a placebo before playing an economic bargaining game. This game involved two conditions, one in which unfair behavior could be punished and one in which unfair behavior could not be punished. RESULTS In the absence of punishment threats, L-DOPA administration led to more selfish behavior, likely mediated through an increase in reward seeking. In contrast, L-DOPA administration had no significant effect on behavior when faced with punishment threats. CONCLUSIONS The results of this study broaden the role of the dopaminergic system in reward seeking to human social interactions. We could show that even a single dose of a dopaminergic drug may bring selfish behavior to the fore, which in turn may shed new light on potential causal relationships between the dopaminergic system and norm abiding behaviors in certain clinical subpopulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STUDY OBJECTIVES Sleep deprivation (SDp) performed before stroke induces an ischemic tolerance state as observed in other forms of preconditioning. As the mechanisms underlying this effect are not well understood, we used DNA oligonucleotide microarray analysis to identify the genes and the gene-pathways underlying SDp preconditioning effects. DESIGN Gene expression was analyzed 3 days after stroke in 4 experimental groups: (i) SDp performed before focal cerebral ischemia (IS) induction; (ii) SDp performed before sham surgery; (iii) IS without SDp; and (iv) sham surgery without SDp. SDp was performed by gentle handling during the last 6 h of the light period, and ischemia was induced immediately after. SETTINGS Basic sleep research laboratory. MEASUREMENTS AND RESULTS Stroke induced a massive alteration in gene expression both in sleep deprived and non-sleep deprived animals. However, compared to animals that underwent ischemia alone, SDp induced a general reduction in transcriptional changes with a reduction in the upregulation of genes involved in cell cycle regulation and immune response. Moreover, an upregulation of a new neuroendocrine pathway which included melanin concentrating hormone, glycoprotein hormones-α-polypeptide and hypocretin was observed exclusively in rats sleep deprived before stroke. CONCLUSION Our data indicate that sleep deprivation before stroke reprogrammed the signaling response to injury. The inhibition of cell cycle regulation and inflammation are neuroprotective mechanisms reported also for other forms of preconditioning treatment, whereas the implication of the neuroendocrine function is novel and has never been described before. These results therefore provide new insights into neuroprotective mechanisms involved in ischemic tolerance mechanisms.