27 resultados para DNA-Methylation
Resumo:
Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.
Resumo:
Ependymal tumors across age groups are currently classified and graded solely by histopathology. It is, however, commonly accepted that this classification scheme has limited clinical utility based on its lack of reproducibility in predicting patients' outcome. We aimed at establishing a uniform molecular classification using DNA methylation profiling. Nine molecular subgroups were identified in a large cohort of 500 tumors, 3 in each anatomical compartment of the CNS, spine, posterior fossa, supratentorial. Two supratentorial subgroups are characterized by prototypic fusion genes involving RELA and YAP1, respectively. Regarding clinical associations, the molecular classification proposed herein outperforms the current histopathological classification and thus might serve as a basis for the next World Health Organization classification of CNS tumors.
Resumo:
Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans.
Resumo:
In chronic myelogenous leukemia (CML), oncogenic BCR-ABL1 activates the Wnt pathway, which is fundamental for leukemia stem cell (LSC) maintenance. Tyrosine kinase inhibitor (TKI) treatment reduces Wnt signaling in LSCs and often results in molecular remission of CML; however, LSCs persist long term despite BCR-ABL1 inhibition, ultimately causing disease relapse. We demonstrate that TKIs induce the expression of the tumor necrosis factor (TNF) family ligand CD70 in LSCs by down-regulating microRNA-29, resulting in reduced CD70 promoter DNA methylation and up-regulation of the transcription factor specificity protein 1. The resulting increase in CD70 triggered CD27 signaling and compensatory Wnt pathway activation. Combining TKIs with CD70 blockade effectively eliminated human CD34(+) CML stem/progenitor cells in xenografts and LSCs in a murine CML model. Therefore, targeting TKI-induced expression of CD70 and compensatory Wnt signaling resulting from the CD70/CD27 interaction is a promising approach to overcoming treatment resistance in CML LSCs.
Resumo:
Methylation of the MGMT promoter is supposed to be a predictive and prognostic factor in glioblastoma. Whether MGMT promoter methylation correlates with tumor response to temozolomide in low-grade gliomas is less clear. Therefore, we analyzed MGMT promoter methylation by a quantitative methylation-specific PCR in 22 patients with histologically verified low-grade gliomas (WHO grade II) who were treated with temozolomide (TMZ) for tumor progression. Objective tumor response, toxicity, and LOH of microsatellite markers on chromosomes 1p and 19q were analyzed. Histological classification revealed ten oligodendrogliomas, seven oligoastrocytomas, and five astrocytomas. All patients were treated with TMZ 200 mg/m2 on days 1-5 in a 4 week cycle. The median progression-free survival was 32 months. Combined LOH 1p and 19q was found in 14 patients; one patient had LOH 1p alone and one patient LOH 19q alone. The LOH status could not be determined in two patients and was normal in the remaining four. LOH 1p and/or 19q correlated with longer time to progression but not with radiological response to TMZ. MGMT promoter methylation was detectable in 20 patients by conventional PCR and quantitative analysis revealed the methylation status was between 12 and 100%. The volumetric response to chemotherapy analyzed by MRI and time to progression correlated with the level of MGMT promoter methylation. Therefore, our retrospective case series suggests that quantitative methylation-specific PCR of the MGMT promoter predicts radiological response to chemotherapy with TMZ in WHO grade II gliomas.
Resumo:
Diffusely infiltrating gliomas (WHO grade II-IV) are the most common primary brain tumours in adults. These tumours are not amenable to cure by surgery alone, so suitable biomarkers for adjuvant modalities are required to guide therapeutic decision-making. Epigenetic silencing of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene by promoter methylation has been associated with longer survival of patients with high-grade gliomas who receive alkylating chemotherapy; and molecular testing for the methylation status of the MGMT promoter sequence is regarded as among the most relevant of such markers. We have developed a primer extension-based assay adapted to formalin-fixed paraffin-embedded tissues that enables quantitative assessment of the methylation status of the MGMT promoter. The assay is very sensitive, highly reproducible, and provides valid test results in nearly 100% of cases. Our results indicate that oligodendrogliomas, empirically known to have a relatively favourable prognosis, are also the most homogeneous entities in terms of MGMT promoter methylation. Conversely, astrocytomas, which are more prone to spontaneous progression to higher grade malignancy, are significantly more heterogeneous. In addition, we show that the degree of promoter methylation correlates with the prevalence of loss of heterozygosity on chromosome arm 1p in the oligodendroglioma group, but not the astrocytoma group. Our results may have potentially important implications for clinical molecular diagnosis.
Resumo:
Please cite this paper as: PTCH promoter methylation at low level in sporadic basal cell carcinoma analysed by three different approaches. Experimental Dermatology 2010. Abstract: Basal cell carcinoma (BCC) is the most common form of skin cancer. Mutations of the PTCH hallmark gene are detected in about 50-60% of BCCs, which raises the question whether other mechanisms such as promoter methylation can inactivate PTCH. Therefore, we performed methylation analysis of the PTCH promoter in a total of 56 BCCs. The sensitivity of three different methods, including direct bisulphite sequencing PCR, MethyLight and high-resolution melting (HRM), was applied and compared. We found that HRM analysis of DNA from fresh tissue [rather than formalin-fixed and paraffin-embedded tissue (FFPE)] was the most sensitive method to detect methylation. Low-level methylation of the PTCH promoter was detected in five out of 16 analysed BCCs (31%) on DNA from fresh tissue but only in two (13%) samples on short-time stored FFPE DNA from the very same tumors. In contrast, we were unable to detect methylation by HRM on long-time stored DNA in any of the remaining 40 BCC samples. Our data suggest that (i) HRM on DNA extracted from fresh tissue is the most sensitive method to detect methylation and (ii) methylation of the PTCH promoter may only play a minor role in BCC carcinogenesis.
Resumo:
When salmonid fish that have been raised in hatcheries spawn in the wild, they often produce fewer surviving adult offspring than wild fish. Recent data from steelhead (Oncorhynchus mykiss) in the Hood River (Oregon, USA) show that even one or two generations of hatchery culture can result in dramatic declines in fitness. Although intense domestication selection could cause such declines, it is worth considering alternative explanations. One possibility is heritable epigenetic changes induced by the hatchery environment. Here, we show, using methylation-sensitive amplified fragment length polymorphism, that hatchery and wild adult steelhead from the Hood River do not appear to differ substantially in overall levels of genomic methylation. Thus, although altered methylation of specific DNA sites or other epigenetic processes could still be important, the hatchery environment does not appear to cause a global hypo- or hypermethylation of the genome or create a large number of sites that are differentially methylated.
Resumo:
Background The aim of this study is to analyse CDKN2A methylation using pyrosequencing on a large cohort of colorectal cancers and corresponding non-neoplastic tissues. In a second step, the effect of methylation on clinical outcome is addressed. Methods Primary colorectal cancers and matched non-neoplastic tissues from 432 patients underwent CDKN2A methylation analysis by pyrosequencing (PyroMarkQ96). Methylation was then related to clinical outcome, microsatellite instability (MSI), and BRAF and KRAS mutation. Different amplification conditions (35 to 50 PCR cycles) using a range of 0-100% methylated DNA were tested. Results Background methylation was at most 10% with ≥35 PCR cycles. Correlation of observed and expected values was high, even at low methylation levels (0.02%, 0.6%, 2%). Accuracy of detection was optimal with 45 PCR cycles. Methylation in normal mucosa ranged from 0 to >90% in some cases. Based on the maximum value of 10% background, positivity was defined as a ≥20% difference in methylation between tumor and normal tissue, which occurred in 87 cases. CDKN2A methylation positivity was associated with MSI (p = 0.025), BRAF mutation (p < 0.0001), higher tumor grade (p < 0.0001), mucinous histology (p = 0.0209) but not with KRAS mutation. CDKN2A methylation had an independent adverse effect (p = 0.0058) on prognosis. Conclusion The non-negligible CDKN2A methylation of normal colorectal mucosa may confound the assessment of tumor-specific hypermethylation, suggesting that corresponding non-neoplastic tissue should be used as a control. CDKN2A methylation is robustly detected by pyrosequencing, even at low levels, suggesting that this unfavorable prognostic biomarker warrants investigation in prospective studies.
Resumo:
The O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical trials with temozolomide plus bevacizumab therapy in metastatic melanoma patients are ongoing, although the predictive value of the MGMT promoter methylation status in this setting remains unclear. We assessed MGMT promoter methylation in formalin-fixed, primary tumor tissue of metastatic melanoma patients treated with first-line temozolomide and bevacizumab from the trial SAKK 50/07 by methylation-specific polymerase chain reaction. In addition, the MGMT expression levels were also analyzed by MGMT immunohistochemistry. Eleven of 42 primary melanomas (26%) revealed a methylated MGMT promoter. Promoter methylation was significantly associated with response rates CR + PR versus SD + PD according to RECIST (response evaluation criteria in solid tumors) (p<0.05) with a trend to prolonged median progression-free survival (8.1 versus 3.4 months, p>0.05). Immunohistochemically different protein expression patterns with heterogeneous and homogeneous nuclear MGMT expression were identified. Negative MGMT expression levels were associated with overall disease stabilization CR+PR+SD versus PD (p=0.05). There was only a poor correlation between MGMT methylation and lack of MGMT expression. A significant proportion of melanomas have a methylated MGMT promoter. The MGMT promoter methylation status may be a promising predictive marker for temozolomide therapy in metastatic melanoma patients. Larger sample sizes may help to validate significant differences in survival type endpoints.
Resumo:
BACKGROUND/AIMS O(6)-methylguanine-methyltransferase (MGMT) is an important enzyme of DNA repair. MGMT promoter methylation is detectable in a subset of pancreatic neuroendocrine neoplasms (pNEN). A subset of pNEN responds to the alkylating agent temozolomide (TMZ). We wanted to correlate MGMT promoter methylation with MGMT protein loss in pNEN, correlate the findings with clinico-pathological data and determine the role of MGMT to predict response to TMZ chemotherapy. METHODS We analysed a well-characterized collective of 141 resected pNEN with median follow-up of 83 months for MGMT protein expression and promoter methylation using methylation-specific PCR (MSP). A second collective of 10 metastasized, pretreated and progressive patients receiving TMZ was used to examine the predictive role of MGMT by determining protein expression and promoter methylation using primer extension-based quantitative PCR. RESULTS In both collectives there was no correlation between MGMT protein expression and promoter methylation. Loss of MGMT protein was associated with an adverse outcome, this prognostic value, however, was not independent from grade and stage in multivariate analysis. Promoter hypermethylation was significantly associated with response to TMZ. CONCLUSION Loss of MGMT protein expression is associated with adverse outcome in a surgical series of pNET. MGMT promoter methylation could be a predictive marker for TMZ chemotherapy in pNEN, but further, favourably prospective studies will be needed to confirm this result and before this observation can influence clinical routine.
Resumo:
Prior research has shown that mothers with Interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis), characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC) activity in response to video-stimuli of stressful versus non-stressful mother-child interactions. Following a mental health assessment, 45 mothers and their children (ages 12-42 months) participated in a behavioral protocol involving free-play and laboratory stressors such as mother-child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother-child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress and PTSD.