29 resultados para DIESEL EXHAUST INHALATION
Resumo:
Waterproofing agents are widely used to protect leather and textiles in both domestic and occupational activities. An outbreak of acute respiratory syndrome following exposure to waterproofing sprays occurred during the winter 2002-2003 in Switzerland. About 180 cases were reported by the Swiss Toxicological Information Centre between October 2002 and March 2003, whereas fewer than 10 cases per year had been recorded previously. The reported cases involved three brands of sprays containing a common waterproofing mixture, that had undergone a formulation change in the months preceding the outbreak. A retrospective analysis was undertaken in collaboration with the Swiss Toxicological Information Centre and the Swiss Registries for Interstitial and Orphan Lung Diseases to clarify the circumstances and possible causes of the observed health effects. Individual exposure data were generated with questionnaires and experimental emission measurements. The collected data was used to conduct numeric simulation for 102 cases of exposure. A classical two-zone model was used to assess the aerosol dispersion in the near- and far-field during spraying. The resulting assessed dose and exposure levels obtained were spread on large scales, of several orders of magnitude. No dose-response relationship was found between exposure indicators and health effects indicators (perceived severity and clinical indicators). Weak relationships were found between unspecific inflammatory response indicators (leukocytes, C-reactive protein) and the maximal exposure concentration. The results obtained disclose a high interindividual response variability and suggest that some indirect mechanism(s) predominates in the respiratory disease occurrence. Furthermore, no threshold could be found to define a safe level of exposure. These findings suggest that the improvement of environmental exposure conditions during spraying alone does not constitute a sufficient measure to prevent future outbreaks of waterproofing spray toxicity. More efficient preventive measures are needed prior to the marketing and distribution of new waterproofing agents.
Resumo:
The airways of cystic fibrosis (CF) patients are characterised by neutrophils that release high amounts of elastase overwhelming the local antiprotease shield. Inhalation of alpha(1)-antitrypsin (AAT) may restore the protease-antiprotease balance and attenuate airway inflammation in CF airways. The aims of the present study were: 1) to assess the best deposition region for inhaled AAT by two different inhalation strategies; and 2) to examine the effect of 4 weeks of AAT inhalation on lung function, protease-antiprotease balance and airway inflammation in CF patients. In a prospective, randomised study, 52 CF patients received a daily deposition by inhalation of 25 mg AAT for 4 weeks targeting their peripheral or bronchial compartment. The levels of elastase activity, AAT, pro-inflammatory cytokines, neutrophils, immunoglobulin G fragments and the numbers of Pseudomonas aeruginosa were assessed in induced sputum before and after the inhalation period. Inhalation of AAT increased AAT levels and decreased the levels of elastase activity, neutrophils, pro-inflammatory cytokines and the numbers of P. aeruginosa. However, it had no effect on lung function. No difference was found between the peripheral and bronchial inhalation mode. In conclusion, although no effect on lung function was observed, the clear reduction of airway inflammation after alpha(1)-antitrypsin treatment may precede pulmonary structural changes. The alpha(1)-antitrypsin deposition region may play a minor role for alpha(1)-antitrypsin inhalation in cystic fibrosis patients.
Resumo:
Asphyxial suicide by placing a plastic bag over the head, especially in combination with inhalation of gases, is a rarely described method of committing suicide. This article reports a case of suicidal asphyxiation by inhaling the inert gas helium inside a plastic bag. A 64-year-old man probably followed the instructions described in an article about committing suicide written by a medical practitioner from Zürich. This form of suicide is recommended by right-to-die groups and in the internet as a certain, fast, and painless suicide method. Additionally, it leaves only seldom externally visible marks or pathomorphological findings on the body. If the plastic bag and other auxiliary means are removed by another person, the forensic death investigation of cause and manner of death may be very difficult. Therefore, the death scene investigation and the inquiry ordered in the environment of the deceased are very important.
Resumo:
The intensive use of nano-sized particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of nanoparticles (NP) with biological systems after various routes of exposure needs to be investigated using well-characterized NP. We report here on the generation of gold-NP (Au-NP) aerosols for inhalation studies with the spark ignition technique, and their characterization in terms of chemical composition, physical structure, morphology, and specific surface area, and on interaction with lung tissues and lung cells after 1 h inhalation by mice. The originally generated agglomerated Au-NP were converted into compact spherical Au-NP by thermal annealing at 600 °C, providing particles of similar mass, but different size and specific surface area. Since there are currently no translocation data available on inhaled Au-NP in the 10–50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation in rodents. For anticipated in vivo systemic translocation and dosimetry analyses, radiolabeled Au-NP were created by proton irradiating the gold electrodes of the spark generator, thus forming gamma ray emitting 195Au with 186 days half-life, allowing long-term biokinetic studies. The dissolution rate of 195Au from the NP was below detection limits. The highly concentrated, polydisperse Au-NP aerosol (1–2 × 107 NP/cm3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation and number concentration. After collection on filters particles can be re-suspended and used for instillation or ingestion studies.
Resumo:
Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic Aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment System varying particle number concentration independent of particle chemistry, and an aerosol Deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully differentiated HBE is most appropriate in future toxicity studies.
Resumo:
INTRODUCTION Inhaled drugs can only be effective if they reach the middle and small airways. This study introduces a system that combines a trans-nasal application of aerosols with noninvasive pressure support ventilation. METHODS In a pilot study, 7 COPD patients with GOLD stages II and III inhaled a radiolabeled marker dissolved in water via a trans-nasal route. The mean aerosol particle size was 5.5 µm. Each patient took part in two inhalation sessions that included two application methods and were at least 70 hours apart. During the first session ("passive method"), the patient inhaled the aerosol through an open tube system. The second session ("active method") included pressure support ventilation during the inhalation process. A gamma camera and planar scintigraphy was used to determine the distribution of aerosol particles in the patient's body and lung. RESULTS The pressure supported inhalation ("active method") results in an increased aerosol lung deposition compared to the passive method. Above all, we could demonstrate deposition in the lung periphery with relatively large aerosol particles (5.5 µm). DISCUSSION The results prove that the combination of trans-nasal inhalation with noninvasive pressure support ventilation leads to significantly increased particle deposition in the lung.
Resumo:
Subarachnoid hemorrhage is a stroke subtype with particularly bad outcome. Recent findings suggest that constrictions of pial arterioles occurring early after hemorrhage may be responsible for cerebral ischemia and - subsequently - unfavorable outcome after subarachnoid hemorrhage. Since we recently hypothesized that the lack of nitric oxide may cause post-hemorrhagic microvasospasms, our aim was to investigate whether inhaled nitric oxide, a treatment paradigm selectively delivering nitric oxide to ischemic microvessels, is able to dilate post-hemorrhagic microvasospasms; thereby improving outcome after experimental subarachnoid hemorrhage. C57BL/6 mice were subjected to experimental SAH. Three hours after subarachnoid hemorrhage pial artery spasms were quantified by intravital microscopy, then mice received inhaled nitric oxide or vehicle. For induction of large artery spasms mice received an intracisternal injection of autologous blood. Inhaled nitric oxide significantly reduced number and severity of subarachnoid hemorrhage-induced post-hemorrhage microvasospasms while only having limited effect on large artery spasms. This resulted in less brain-edema-formation, less hippocampal neuronal loss, lack of mortality, and significantly improved neurological outcome after subarachnoid hemorrhage. This suggests that spasms of pial arterioles play a major role for the outcome after subarachnoid hemorrhage and that lack of nitric oxide is an important mechanism of post-hemorrhagic microvascular dysfunction. Reversing microvascular dysfunction by inhaled nitric oxide might be a promising treatment strategy for subarachnoid hemorrhage.
Resumo:
Inhalation anesthesia with isoflurane is a well-established and safe method used in small laboratory animals. In most cases oxygen is used as a carrier gas for isoflurane, but room air or mixtures of oxygen with air or nitrous oxide are also being used. Anesthesia is therefore administered using different fractions of inspired oxygen (FiO2), and this may have consequences for the outcome of experiments. The aim of the present study was to investigate the influence of FiO2 on rat hind limb ischemia/reperfusion injury and to refine the used inhalation anesthesia. Male Wistar rats were subjected to 3.5 h of ischemia and 2 h of reperfusion, and divided into three groups according to FiO2 in the O2/air/isoflurane anesthesia gas mixture: 40%, 60%, and 100% O2. Normal, healthy rats were used as controls. Muscle edema and creatine kinase MM, a marker for myocyte necrosis, were significantly increased with 40% FiO2 as compared with 100% FiO2 (P<0.05). Partial pressure of oxygen, oxygen saturation, and oxyhemoglobin were significantly higher in the 100% O2 group as compared with 40% O2. No significant differences were detected for other parameters, such as the oxidative stress markers malondialdehyde and superoxide dismutase. We conclude that a refined inhalation anesthesia setting using 40% FiO2, reflecting more or less the clinical situation, leads to a more severe and more physiologically relevant reperfusion injury than higher FiO2. Oxidative stress did not correlate with FiO2 and seemed to have no influence on reperfusion injury.