39 resultados para DETRITAL ZIRCON


Relevância:

10.00% 10.00%

Publicador:

Resumo:

[1] The evolution of the rift shoulder and the sedimentary sequence of the Morondava basin in western Madagascar was mainly influenced by a Permo-Triassic continental failed rift (Karroo rift), and the early Jurassic separation of Madagascar from Africa. Karroo deposits are restricted to a narrow corridor along the basement-basin contact and parts of this contact feature a steep escarpment. Here, apatite fission track (AFT) analysis of a series of both basement and sediment samples across the escarpment reveals the low-temperature evolution of the exhuming Precambrian basement in the rift basin shoulder and the associated thermal evolution of the sedimentary succession. Seven basement and four Karroo sediment samples yield apparent AFT ages between ∼330 and ∼215 Ma and ∼260 and ∼95 Ma, respectively. Partially annealed fission tracks and thermal modeling indicate post-depositional thermal overprinting of both basement and Karroo sediment. Rocks presently exposed in the rift shoulder indicate temperatures of >60°C associated with this reheating whereby the westernmost sample in the sedimentary plain experienced almost complete resetting of the detrital apatite grains at temperatures of about ∼90–100°C. The younging of AFT ages westward indicates activity of faults, re-activating inherited Precambrian structures during Karroo sedimentation. Furthermore, our data suggest onset of final cooling/exhumation linked to (1) the end of Madagascar's drift southward relative to Africa during the Early Cretaceous, (2) activity of the Marion hot spot and associated Late Cretaceous break-up between Madagascar and India, and (3) the collision of India with Eurasia and subsequent re-organization of spreading systems in the Indian Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated oxygen and carbon isotopes of bulk carbonate and of benthic freshwater ostracods (Candona candida) in a sediment core of Lago Piccolo di Avigliana that was previously analyzed for pollen and loss-on-ignition, in order to reconstruct environmental changes during the late glacial and early Holocene. The depth-age relationship of the sediment core was established using 14 AMS C-14 dates and the Laacher See Tephra. While stable isotopes of bulk carbonates may have been affected by detrital input and, therefore, only indirectly reflect climatic changes, isotopes measured on ostracod shells provide unambiguous evidence for major environmental changes. Oxygen isotope ratios of ostracod shells (delta O-18(C)) increased by similar to 6 parts per thousand at the onset of the Bolling (similar to 14,650 cal BP) and were similar to 2 parts per thousand lower during the Younger Dryas (similar to 12,850 to 11,650 cal BP), indicating a temporal pattern of climate changes similar to the North Atlantic region. However, in contrast to records in that region, delta O-18(C) gradually decreased during the early Holocene, suggesting that compared to the Younger Dryas more humid conditions occurred and that the lake received gradually increasing input of O-18-depleted groundwater or river water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we investigate sedimentary records from four small inland lakes located in the southern Cascadia forearc region for evidence of earthquakes. Three of these lakes are in the Klamath Mountains near the Oregon–California border, and one is in the central Oregon Coast range. The sedimentary sequences recovered from these lakes are composed of normal lake sediment interbedded with disturbance event layers. The thickest of these layers are graded, and appear to be turbidites or linked debrites (turbidites with a basal debris-flow deposit), suggesting rapid deposition. Variations in particle size and organic content of these layers are reflected in the density and magnetic susceptibility data. The frequency and timing of these events, based on radiocarbon ages from detrital organics, is similar to the offshore seismogenic turbidite record from trench and slope basin cores along the Cascadia margin. Stratigraphic correlation of these anomalous deposits based on radiocarbon ages, down-core density, and magnetic susceptibility data between lake and offshore records suggest synchronous triggering. The areal extent and multiple depositional environments over which these events appear to correlate suggest that these deposits were most likely caused by shaking during great Cascadia earthquakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[1] Two millimeter-sized hydrothermal monazites from an open fissure (cleft) that developed late during a dextral transpressional deformation event in the Aar Massif, Switzerland, have been investigated using electron microprobe and ion probe. The monazites are characterized by high Th/U ratios typical of other hydrothermal monazites. Deformation events in the area have been subdivided into three phases: (D1) main thrusting including formation of a new schistosity, (D2) dextral transpression, and (D3) local crenulation including development of a new schistosity. The two younger deformational structures are related to a subvertically oriented intermediate stress axis, which is characteristic for strike slip deformation. The inferred stress environment is consistent with observed kinematics and the opening of such clefts. Therefore, the investigated monazite-bearing cleft formed at the end of D2 and/or D3, and during dextral movements along NNW dipping planes. Interaction of cleft-filling hydrothermal fluid with wall rock results in rare earth element (REE) mineral formation and alteration of the wall rock. The main newly formed REE minerals are Y-Si, Y-Nb-Ti minerals, and monazite. Despite these mineralogical changes, the bulk chemistry of the system remains constant and thus these mineralogical changes require redistribution of elements via a fluid over short distances (centimeter). Low-grade alteration enables local redistribution of REE, related to the stability of the accessory phases. This allows high precision isotope dating of cleft monazite. 232Th/208Pb ages are not affected by excess Pb and yield growth domain ages between 8.03 ± 0.22 and 6.25 ± 0.60 Ma. Monazite crystallization in brittle structures is coeval or younger than 8 Ma zircon fission track data and hence occurred below 280°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Suretta nappe of eastern Switzerland contains a series of meta-igneous rocks, with the Rofna Porphyry Complex (RPC) being the most prominent member. We present LA-ICP-MS U–Pb zircon data from 12 samples representing a broad spectrum of meta-igneous rocks within the Suretta nappe, in order to unravel the pre-Alpine magmatic history of this basement unit. Fine-grained porphyries and coarse-grained augengneisses from the RPC give crystallization ages between 284 and 271 Ma, which either represent distinct magma pulses or long-lasting magmatic activity in a complex magma chamber. There is also evidence for an earlier Variscan magmatic event at ~320–310 Ma. Mylonites at the base of the Suretta nappe are probably derived from either the RPC augengneisses or another unknown Carboniferous–Permian magmatic protolith with a crystallization age between 320 and 290 Ma. Two polymetamorphic orthogneisses from the southern Suretta nappe yield crystallization ages of ~490 Ma. Inherited zircon cores are mainly of late Neoproterozoic age, with minor Neo- to Paleoproterozoic sources. We interpret the Suretta nappe as mainly representing a Gondwana-derived crustal unit, which was subsequently intruded by minor Cambrian–Ordovician and major Carboniferous–Permian magmatic rocks. Finally, the Suretta nappe was thrust into its present position during the Alpine orogeny, which hardly affected the U–Pb system in zircon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many regions, tectonic uplift is the main driver of erosion over million-year (Myr) timescales, but climate changes can markedly affect the link between tectonics and erosion, causing transient variations in erosion rates. Here we study the driving forces of millennial to Myr-scale erosion rates in the French Western Alps, as estimated from in situ produced cosmogenic 10Be and a newly developed approach integrating detrital and bedrock apatite fission-track thermochronology. Millennial erosion rates from 10Be analyses vary between ~0.27 and ~1.33 m/kyr, similar to rates measured in adjacent areas of the Alps. Significant positive correlations of millennial erosion rates with geomorphic measures, in particular with the LGM ice thickness, reveal a strong transient morphological and erosional perturbation caused by repeated Quaternary glaciations. The perturbation appears independent of Myr-scale uplift and erosion gradients, with the effect that millennial erosion rates exceed Myr-scale erosion rates only in the internal Alps where the latter are low (<0.4 km/Myr). These areas, moreover, exhibit channels that clearly plot above a general linear positive relation between Myr-scale erosion rates and normalized steepness index. Glacial erosion acts irrespective of rock uplift and thus not only leads to an overall increase in erosion rates but also regulates landscape morphology and erosion rates in regions with considerable spatial gradients in Myr-scale tectonic uplift. Our study demonstrates that climate change, e.g., through occurrence of major glaciations, can markedly perturb landscape morphology and related millennial erosion rate patterns, even in regions where Myr-scale erosion rates are dominantly controlled by tectonics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to date any geological event, suitable mineral geochronometers that record that and only that event must be identified and analyzed. In the case of metasomatism, recrystallisation is a key process that controls both the petrology and the isotopic record of minerals. It can occur both in the form of complete neocrystallisation (e.g. in a vein) and in the form of pseudomorphism, whereby dissolution/reprecipitation at the submicroscopic scale plays a central role. Recrystallisation may be complete or not, raising the possibility that relicts of a pre-metasomatic assemblage may be preserved. Because recrystallisation is energetically less costly at almost any temperature than diffusion, and because radiogenic isotopes (except 4He) never diffuse faster than major elements forming the mineral structure, there is a strong causal link between petrographic relicts and isotopic inheritance (as demonstrated for zircon, monazite, titanite, amphibole, K-feldspar, biotite, and muscovite). Metasomatic assemblages commonly contain such mixtures between relicts and newly formed phases, whose geochronology is slightly more complex than that of simple, ideal systems, but can be managed by techniques that have become routine in the last decade and which are described in this chapter. Because of its crucial role in controlling the isotope systematics, the petrogenesis of a mineral needs to be understood in extreme detail, especially using microchemical analyses and micro-imaging techniques, before mineral ages can be correctly interpreted. As the occurrence of recrystallization is limited by the availability of water, minerals act as “geohygrometers” that allow constraints to be placed on the nature and age of fluid circulation episodes, especially metasomatic events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the forearc of the Andean active margin in southwest Ecuador, the El Oro metamorphic complex exhibits a well exposed tilted forearc section partially migmatized. We used Raman spectroscopy on carbonaceous matter (RSCM) thermometry and pseudosections coupled with mineralogical and textural studies to constrain the pressure–temperature (P–T) evolution of the El Oro metamorphic complex during Triassic times. Our results show that anatexis of the continental crust occurred by white-mica and biotite dehydration melting along a 10 km thick crustal domain (from 4.5 to 8 kbar) with increasing temperature from 650 to 700 °C. In the biotite dehydration melting zone, temperature was buffered at 750–820 °C in a 5 km thick layer. The estimated average thermal gradient during peak metamorphism is of 30 °C/km within the migmatitic domain can be partitioned into two apparent gradients parts. The upper part from surface to 7 km depth records a 40–45 °C/km gradient. The lower part records a quasi-adiabatic geotherm with a 10 °C/km gradient consistent with an isothermal melting zone. Migmatites U–Th–Pb geochronology yielded zircon and monazite ages of 229.3 ± 2.1 Ma and 224.5 ± 2.3 Ma, respectively. This thermal event generated S-type magmatism (the Marcabeli granitoid) and was immediately followed by underplating of the high-pressure low-temperature (HP-LT) Arenillas–Panupalí unit at 225.8 ± 1.8 Ma. The association of high-temperature low-pressure (HT-LP) migmatites with HP-LT unit constitutes a new example of a paired metamorphic belt along the South American margin. We propose that in addition to crustal thinning, underplating of the Piedras gabbroic unit before 230 Ma provided the heat source necessary to foster crustal anatexis. Furthermore, its MORB signature shows that the asthenosphere was involved as the source of the heat anomaly. S-type felsic magmatism is widespread during this time and suggests that a large-scale thermal anomaly affected a large part of the South American margin during the late Triassic. We propose that crustal anatexis is related to an anomaly that arose during subduction of the Panthalassa ocean under the South American margin. Slab verticalization or slab break-off can be invoked as the origin of the upwelling of the asthenosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Opalinus Clay formation in North Switzerland is a potential host rock for a deep underground radioactive waste repository. The distribution of U-238, U-234 and Th-230 was studied in rock samples of the Opalinus Clay from an exploratory borehole at Benken (Canton of Zurich) using MC-ICP-MS. The aim of U-234 was to assess the in situ, long-term migration behaviour in this rock. Very low hydraulic conductivities of the Opalinus Clay, reducing potential of the pore water and its chemical equilibrium with the host rock are expected to render both U-238 and Th-230 immobile. If U is heterogeneously distributed in the Opalinus Clay, gradients in the supply of U-234 from the rock matrix to the pore water by the decay of U-238 will be established. Diffusive redistribution separates U-234 from its immobile parent U-238 resulting in bulk rock U-234/U-238 activity disequilibria. These may provide a means of estimating the mobility of U-234 in the rock if the diffusion rate of U-234 is significant compared to its decay rate. Sampling was carried out on two scales. Drilling of cm-spaced samples from the drill-core was done to study mobility over short distances and elucidate possible small-scale lithological control. Homogenized 25-cm-long portions of a 2-m-long drill-core section were prepared to provide information on transport over a longer distance. Variations in U and/or Th content on the cm-scale between clays and carbonate-sandy layers are revealed by beta-scanning, which shows that the (dominant) clay is richer in both elements. Samples were digested using aqua regia followed by total HF dissolution, yielding two fractions. in all studied samples U was found to be concentrated in the HF digestion fraction. It has a high U/Th ratio and a study by SEM-EDS points to sub-mu m up to several mu m in size zircon grains as the main U-rich phase. This fraction consistently has U-234/U-238 activity ratios below unity. The minute zircon grains constitute the major reservoir of U in the rock and act as constant rate suppliers of U-234 into the rock matrix and the pore water. The aqua regia leach fraction was found to be enriched in Th, and complementary to the HF fraction, having U-234/U-238 activity ratios above unity. It is believed that these U activity ratios reflect the surplus of having U-234 delivered from the zircon grains. Some cm-spaced samples show bulk rock U-234/U-238 activity ratios that are markedly out of equilibrium. In most of them a striking negative correlation between the total U content and the bulk rock U-234/U-238 activity ratios is observed. This is interpreted to indicate net U-234 transfer from regions of higher supply of U-234 towards those of lower supply which is, in most cases, equivalent to transfer from clayey towards carbonate/sandy portions of the rock. In contrast, the 25 cm averaged samples all have uniform bulk rock U-234/U-238 activity ratios in equilibrium, indicating U immobility in the last 1-1.5 Ma on this spatial scale. It is concluded that the small-scale lithological variations which govern U spatial distribution in the Opalinus Clay are the major factor determining U-234 in situ supply rates, regulating its diffusive fluxes and controlling the observed bulk rock U-234/U-238 activity ratios. A simple box-model is presented to simulate the measured bulk rock U-234/U-238 activity ratios and to give an additional insight into the studied system. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multichronometric analyses were performed on samples from a transect in the French-Italian Western Alps crossing nappes derived from the Briançonnais terrane and the Piemonte-Liguria Ocean, in an endeavour to constrain the high-pressure (HP) metamorphism and the retrogression history. 12 samples of white mica were analysed by 39Ar-40Ar stepwise heating, complemented by 2 samples from the Monte Rosa 100 km to the NE and also attributed to the Briançonnais terrane. One Sm-Nd and three Lu-Hf garnet ages from eclogites were also obtained. White mica ages decrease from ca. 300 Ma in the westernmost samples (Zone Houillère), reaching ca. 300 °C during Alpine metamorphism, to < 48 Ma in the internal units to the East, which reached ca. 500 °C during Alpine orogeny. The conventional “thermochronological” interpretation postulates Cretaceous Eo-Alpine HP metamorphism and younger “cooling ages” in the higher-temperature samples. However, Eocene Lu-Hf and Sm-Nd ages from the same samples cannot be interpreted as post-metamorphic cooling ages, which makes a Cretaceous eclogitization untenable. The age date from this transect require instead to replace conventional “thermochronology” by an approach combining age dating with detailed geochemical, petrological and microstructural investigations. Petrology reveals important mineralogical differences along the transect. Samples from the Zone Houillère mostly contain detrital mica. White mica with Si > 6.45 atoms per formula unit becomes more abundant eastward. Across the whole traverse, HP phengitic mica forms the D1 foliation. Syn-D2 mica is Si-poorer and associated with nappe stacking, exhumation, and hydrous retrogression under greenschist facies conditions. D1 phengite is very often corroded, overgrown or intergrown by syn-D2 muscovite. Most importantly, syn-D2 recrystallization is not limited to S2 schistosity domains; microchemical fingerprinting shows that it also can form pseudomorphs after crystals that could be mistaken to have formed during D1 based on microstructural arguments alone. Thereby the Cl concentration in white mica is a useful discriminator, since D2 retrogression was associated with a less saline fluid than eclogitization. Once the petrological stage is set, geochronology is straightforward. All samples contain mixtures of detrital, syn-D1 and syn-D2 mica, and retrogression phases (D3) in greatly varying proportions according to local pressure-temperature-fluid activity-deformation conditions. The correlation of age vs. Cl/K clearly identifies 47 ± 1 Ma as the age of formation of syn-D1 mica along the entire transect, including the Monte Rosa nappe samples. The inferred age of the greenschist-facies low-Si syn-D2 mica generation ranges within 39-43 Ma, with local variations. Coexistence of D1 and D2 ages, and the constancy of non-reset D1 ages along the entire transect, are strong evidence that the D1 white mica ages are very close to formation ages. Volume diffusion of Ar in white mica (activation energy E = 250 kJ/mol; pressure-adjusted diffusion coefficient D’0 < 0.03 cm2 s-1) has a subordinate effect on mineral ages compared to both prograde and retrograde recrystallization in most samples. Eocene Lu-Hf and Sm-Nd garnet ages are prograde and predate the HP peak.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although beryllium-10 (10Be) concentrations in stream sediments provide useful synoptic views of catchment-wide erosion rates, little is known on the relative contributions of different sediment supply mechanisms to the acquisition of their initial signature in the headwaters. Here we address this issue by conducting a 10Be-budget of detrital materials that characterize the morphogenetic domains representative of high-altitude environments of the European Alps. We focus on the Etages catchment, located in the Ecrins-Pelvoux massif (southeast France), and illustrate how in situ 10Be concentrations can be used for tracing the origin of the sand fraction from the bedload in the trunk stream. The landscape of the Etages catchment is characterized by a geomorphic transient state, high topographic gradients, and a large variety of modern geomorphic domains ranging from glacial environments to scarcely vegetated alluvial plains. Beryllium-10 concentrations measured in the Etages catchment vary from similar to 1 x 104 to 4.5 x 105 atoms per gram quartz, while displaying consistent 10Be signatures within each representative morphogenetic unit. We show that the basic requirements for inferring catchment-wide denudation from 10Be concentration measurements are not satisfied in this small, dynamic catchment. However, the distinct 10Be signature observed for the geomorphic domains can be used as a tracer. We suggest that a terrestrial cosmogenic nuclide (TCN) budget approach provides a valuable tool for the tracing of material origin in basins where the let nature do the averaging' principles may be violated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monazite-bearing Alpine clefts located in the Sonnblick region of the eastern Tauern Window, Austria, are oriented perpendicular to the foliation and lineation. Ion probe (SIMS) Th–Pb and U–Pb dating of four cleft monazites yields crystallization ages of different growth domains and aggregate regions ranging from 18.99 ± 0.51 to 15.00 ± 0.51 Ma. The crystallization ages obtained are overlapping or slightly younger than zircon fission track ages but older than zircon (U–Th)/He cooling ages from the same area. This constrains cleft monazite crystallization in this area to *300–200 �C. LA-ICP-MS data of dated hydrothermal monazites indicate that in graphite-bearing, reduced host lithologies, cleft monazite is poor in As and has higher La/Yb values and U concentrations, whereas in oxidised host rocks opposite trends are observed. Monazites show negative Eu anomalies and variable La/Yb values ranging from 520 to 6050. The positive correlation between Ca and Sr concentration indicates dissolution of plagioclase or carbonates as the source of these elements. The data show that early exhumation and cleft formation in the Tauern is related to metamorphic dome formation caused by the collision of the Adriatic with the European plate and that monazite crystallization in the clefts occurred later. Our data also demonstrate that hydrothermal monazite ages offer great potential in helping to constrain the chronology of exhumation in collisional orogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new thermodynamic activity-composition model for di-trioctahedral chlorite in the system FeO–MgO–Al2O3–SiO2–H2O that is based on the Holland–Powell internally consistent thermodynamic data set. The model is formulated in terms of four linearly independent end-members, which are amesite, clinochlore, daphnite and sudoite. These account for the most important crystal-chemical substitutions in chlorite, the Fe–Mg, Tschermak and di-trioctahedral substitution. The ideal part of end-member activities is modeled with a mixing-on-site formalism, and non-ideality is described by a macroscopic symmetric (regular) formalism. The symmetric interaction parameters were calibrated using a set of 271 published chlorite analyses for which robust independent temperature estimates are available. In addition, adjustment of the standard state thermodynamic properties of sudoite was required to accurately reproduce experimental brackets involving sudoite. This new model was tested by calculating representative P–T sections for metasediments at low temperatures (<400 °C), in particular sudoite and chlorite bearing metapelites from Crete. Comparison between the calculated mineral assemblages and field data shows that the new model is able to predict the coexistence of chlorite and sudoite at low metamorphic temperatures. The predicted lower limit of the chloritoid stability field is also in better agreement with petrological observations. For practical applications to metamorphic and hydrothermal environments, two new semi-empirical chlorite geothermometers named Chl(1) and Chl(2) were calibrated based on the chlorite + quartz + water equilibrium (2 clinochlore + 3 sudoite = 4 amesite + 4 H2O + 7 quartz). The Chl(1) thermometer requires knowledge of the (Fe3+/ΣFe) ratio in chlorite and predicts correct temperatures for a range of redox conditions. The Chl(2) geothermometer which assumes that all iron in chlorite is ferrous has been applied to partially recrystallized detrital chlorite from the Zone houillère in the French Western Alps.