39 resultados para DARK ENERGY THEORY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recently proposed framework of hard pion chiral perturbation theory, the leading chiral logarithms are predicted to factorize with respect to the energy dependence in the chiral limit. We have scrutinized this assumption in the case of vector and scalar pion form factors FV;S(s) by means of standard chiral perturbation theory and dispersion relations. We show that this factorization property is valid for the elastic contribution to the dispersion integrals for FV;S(s) but it is violated starting at three loops when the inelastic four-pion contributions arise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a flux formulation of Double Field Theory in which fluxes are dynamical and field-dependent. Gauge consistency imposes a set of quadratic constraints on the dynamical fluxes, which can be solved by truly double configurations. The constraints are related to generalized Bianchi Identities for (non-)geometric fluxes in the double space, sourced by (exotic) branes. Following previous constructions, we then obtain generalized connections, torsion and curvatures compatible with the consistency conditions. The strong constraint-violating terms needed to make contact with gauged supergravities containing duality orbits of non-geometric fluxes, systematically arise in this formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare lattice data for the short-distance part of the static energy in 21 flavor quantum chromodynamics (QCD) with perturbative calculations, up to next-to-next-to-next-to leading-logarithmic accuracy. We show that perturbation theory describes very well the lattice data at short distances, and exploit this fact to obtain a determination of the product of the lattice scale r0 with the QCD scale ΛMS. With the input of the value of r0, this provides a determination of the strong coupling αs at the typical distance scale of the lattice data. We obtain αs1.5  GeV0.3260.019, which provides a novel determination of αs with three-loop accuracy (including resummation of the leading ultrasoft logarithms), and constitutes one of the few low-energy determinations of αs available. When this value is evolved to the Z-mass scale MZ, it corresponds to αsMZ0.11560.00220.0021.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transverse broadening of an energetic jet passing through a non-Abelian plasma is believed to be described by the thermal expectation value of a light-cone Wilson loop. In this exploratory study, we measure the light-cone Wilson loop with classical lattice gauge theory simulations. We observe, as suggested by previous studies, that there are strong interactions already at short transverse distances, which may lead to more efficient jet quenching than in leading-order perturbation theory. We also verify that the asymptotics of the Wilson loop do not change qualitatively when crossing the light cone, which supports arguments in the literature that infrared contributions to jet quenching can be studied with dimensionally reduced simulations in the space-like domain. Finally we speculate on possibilities for full four-dimensional lattice studies of the same observable, perhaps by employing shifted boundary conditions in order to simulate ensembles boosted by an imaginary velocity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso, Italy are presented. Data from measurements with an external AmB(241)e neutron source are compared with a detailed Monte Carlo simulation which is used to extract the energy-dependent charge-yield Q(y) and relative scintillation efficiency L-eff. A very good level of absolute spectral matching is achieved in both observable signal channels-scintillation S1 and ionization S2-along with agreement in the two-dimensional particle discrimination space. The results confirm the validity of the derived signal acceptance in earlier reported dark matter searches of the XENON100 experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop further the effective fluid theory of stationary branes. This formalism applies to stationary blackfolds as well as to other equilibrium brane systems at finite temperature. The effective theory is described by a Lagrangian containing the information about the elastic dynamics of the brane embedding as well as the hydrodynamics of the effective fluid living on the brane. The Lagrangian is corrected order-by-order in a derivative expansion, where we take into account the dipole moment of the brane which encompasses finite-thickness corrections, including transverse spin. We describe how to extract the thermodynamics from the Lagrangian and we obtain constraints on the higher-derivative terms with one and two derivatives. These constraints follow by comparing the brane thermodynamics with the conserved currents associated with background Killing vector fields. In particular, we fix uniquely the one- and two-derivative terms describing the coupling of the transverse spin to the background space-time. Finally, we apply our formalism to two blackfold examples, the black tori and charged black rings and compare the latter to a numerically generated solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the lightquark masses, the form factor f+(0), arising in semileptonic K → π transition at zero momentum transfer, as well as the decay-constant ratio fK / fπ of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)L × SU(2)R and SU(3)L×SU(3)R Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant αs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate reductions of M-theory beyond twisted tori by allowing the presence of KK6 monopoles (KKO6-planes) compatible with N = 4 supersymmetry in four dimensions. The presence of KKO6-planes proves crucial to achieve full moduli stabilisation as they generate new universal moduli powers in the scalar potential. The resulting gauged supergravities turn out to be compatible with a weak G2 holonomy at N = 1 as well as at some non-supersymmetric AdS4 vacua. The M-theory flux vacua we present here cannot be obtained from ordinary type IIA orientifold reductions including background fluxes, D6-branes (O6-planes) and/or KK5 (KKO5) sources. However, from a four-dimensional point of view, they still admit a description in terms of so-called non-geometric fluxes. In this sense we provide the M-theory interpretation for such non-geometric type IIA flux vacua.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the failure of lowest order chiral SU(3)L ×SU(3)R perturbation theory χPT3 to account for amplitudes involving the f0(500) resonance and O(mK) extrapolations in momenta. We summarize our proposal to replace χPT3 with a new effective theory χPTσ based on a low-energy expansion about an infrared fixed point in 3-flavour QCD. At the fixed point, the quark condensate ⟨q̅q⟩vac ≠ 0 induces nine Nambu-Goldstone bosons: π,K,η and a QCD dilaton σ which we identify with the f0(500) resonance. We discuss the construction of the χPTσ Lagrangian and its implications for meson phenomenology at low-energies. Our main results include a simple explanation for the ΔI = 1/2 rule in K-decays and an estimate for the Drell-Yan ratio in the infrared limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Luminescence and energy transfer in [Zn1-xRux(bpy)3][NaAl1-yCry(ox)3] (x ≈ 0.01, y = 0.006 − 0.22; bpy = 2,2‘-bipyridine, ox = C2O42-) and [Zn1-x-yRuxOsy(bpy)3][NaAl(ox)3] (x ≈ 0.01, y = 0.012) are presented and discussed. Surprisingly, the luminescence of the isolated luminophores [Ru(bpy)3]2+ and [Os(bpy)3]2+ in [Zn(bpy)3][NaAl(ox)3] is hardly quenched at room temperature. Steady-state luminescence spectra and decay curves show that energy transfer occurs between [Ru(bpy)3]2+ and [Cr(ox)3]3- and between [Ru(bpy)3]2+ and [Os(bpy)3]2+ in [Zn1-xRux(bpy)3][NaAl1-yCry(ox)3] and [Zn1-x-yRuxOsy(bpy)3] [NaAl(ox)3], respectively. For a quantitative investigation of the energy transfer, a shell type model is developed, using a Monte Carlo procedure and the structural parameters of the systems. A good description of the experimental data is obtained assuming electric dipole−electric dipole interaction between donors and acceptors, with a critical distance Rc for [Ru(bpy)3]2+ to [Cr(ox)3]3- energy transfer of 15 Å and for [Ru(bpy)3]2+ to [Os(bpy)3]2+ energy transfer of 33 Å. These values are in good agreement with those derived using the Förster−Dexter theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a search for new particles in events with one lepton (electron or muon) and missing transverse momentum using 20.3 fb−1 of proton-proton collision data at TeX = 8 TeV recorded by the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. A W ′ with Sequential Standard Model couplings is excluded at the 95% confidence level for masses up to 3.24 TeV. Excited chiral bosons (W *) with equivalent coupling strengths are excluded for masses up to 3.21 TeV. In the framework of an effective field theory limits are also set on the dark matter-nucleon scattering cross-section as well as the mass scale M * of the unknown mediating interaction for dark matter pair production in association with a leptonically decaying W.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

search is presented for production of dark-matter particles recoiling against a leptonically decaying Z boson in 20.3 fb−1 of pp collisions at √s=8 TeV with the ATLAS detector at the Large Hadron Collider. Events with large missing transverse momentum and two oppositely charged electrons or muons consistent with the decay of a Z boson are analyzed. No excess above the Standard Model prediction is observed. Limits are set on the mass scale of the contact interaction as a function of the dark-matter particle mass using an effective field theory description of the interaction of dark matter with quarks or with Z bosons. Limits are also set on the coupling and mediator mass of a model in which the interaction is mediated by a scalar particle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Even though the Standard Model with a Higgs mass mH = 125GeV possesses no bulk phase transition, its thermodynamics still experiences a "soft point" at temperatures around T = 160GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial "structure" visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T > 160GeV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quarks were introduced 50 years ago opening the road towards our understanding of the elementary constituents of matter and their fundamental interactions. Since then, a spectacular progress has been made with important discoveries that led to the establishment of the Standard Theory that describes accurately the basic constituents of the observable matter, namely quarks and leptons, interacting with the exchange of three fundamental forces, the weak, electromagnetic and strong force. Particle physics is now entering a new era driven by the quest of understanding of the composition of our Universe such as the unobservable (dark) matter, the hierarchy of masses and forces, the unification of all fundamental interactions with gravity in a consistent quantum framework, and several other important questions. A candidate theory providing answers to many of these questions is string theory that replaces the notion of point particles by extended objects, such as closed and open strings. In this short note, I will give a brief overview of string unification, describe in particular how quarks and leptons can emerge and discuss what are possible predictions for particle physics and cosmology that could test these ideas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quarks were introduced 50 years ago opening the road towards our understanding of the elementary constituents of matter and their fundamental interactions. Since then, a spectacular progress has been made with important discoveries that led to the establishment of the Standard Theory that describes accurately the basic constituents of the observable matter, namely quarks and leptons, interacting with the exchange of three fundamental forces, the weak, electromagnetic and strong force. Particle physics is now entering a new era driven by the quest of understanding of the composition of our Universe such as the unobservable (dark) matter, the hierarchy of masses and forces, the unification of all fundamental interactions with gravity in a consistent quantum framework, and several other important questions. A candidate theory providing answers to many of these questions is string theory that replaces the notion of point particles by extended objects, such as closed and open strings. In this short note, I will give a brief overview of string unification, describe in particular how quarks and leptons can emerge and discuss what are possible predictions for particle physics and cosmology that could test these ideas.