46 resultados para D04 - Microeconomic Policy: Formulation, Implementation, and Evaluation
Resumo:
BACKGROUND: The neuronal ceroid lipofuscinoses (NCL) are a heterogenous group of inherited progressive neurodegenerative diseases in different mammalian species. Tibetan Terrier and Polish Owczarek Nizinny (PON) dogs show rare late-onset NCL variants with autosomal recessive inheritance, which can not be explained by mutations of known human NCL genes. These dog breeds represent animal models for human late-onset NCL. In mice the chloride channel 3 gene (Clcn3) encoding an intracellular chloride channel was described to cause a phenotype similar to NCL. RESULTS: Two full-length cDNA splice variants of the canine CLCN3 gene are reported. The current canine whole genome sequence assembly was used for gene structure analyses and revealed 13 coding CLCN3 exons in 52 kb of genomic sequence. Sequence analysis of the coding exons and flanking intron regions of CLCN3 using six NCL-affected Tibetan terrier dogs and an NCL-affected Polish Owczarek Nizinny (PON) dog, as well as eight healthy Tibetan terrier dogs revealed 13 SNPs. No consistent CLCN3 haplotype was associated with NCL. CONCLUSION: For the examined animals we excluded the complete coding region and adjacent intronic regions of canine CLCN3 to harbor disease-causing mutations. Therefore it seems to be unlikely that a mutation in this gene is responsible for the late-onset NCL phenotype in these two dog breeds.
Resumo:
OBJECTIVES: We sought to compare the diagnostic performance of screen-film radiography, storage-phosphor radiography, and a flat-panel detector system in detecting forearm fractures and to classify distal radius fractures according to the Müller-AO and Frykman classifications compared with the true extent, depicted by anatomic preparation. MATERIALS AND METHODS: A total of 71 cadaver arms were fractured in a material testing machine creating different fractures of the radius and ulna as well as of the carpal bones. Radiographs of the complete forearm were evaluated by 3 radiologists, and anatomic preparation was used as standard of reference in a receiver operating curve analysis. RESULTS: The highest diagnostic performance was obtained for the detection of distal radius fractures with area under the receiver operating curve (AUC) values of 0.959 for screen-film radiography, 0.966 for storage-phosphor radiography, and 0.971 for the flat-panel detector system (P > 0.05). Exact classification was slightly better for the Frykman (kappa values of 0.457-0.478) compared with the Müller-AO classification (kappa values of 0.404-0.447), but agreement can be considered as moderate for both classifications. CONCLUSIONS: The 3 imaging systems showed a comparable diagnostic performance in detecting forearm fractures. A high diagnostic performance was demonstrated for distal radius fractures and conventional radiography can be routinely performed for fracture detection. However, compared with anatomic preparation, depiction of the true extent of distal radius fractures was limited and the severity of distal radius fractures tends to be underestimated.
Resumo:
A heterozygous missense mutation in the GH-1 gene converting codon 77 from arginine (R) to cysteine (C), which was previously reported to have some GH antagonistic effect, was identified in a Syrian family. The index patient, a boy, was referred for assessment of his short stature (-2.5 SDS) at the age of 6 years. His mother and grandfather were also carrying the same mutation, but did not differ in adult height from the other unaffected family members. Hormonal examination in all affected subjects revealed increased basal GH, low IGF-I concentrations, and subnormal IGF-I response in generation test leading to the diagnosis of partial GH insensitivity. However, GH receptor gene (GHR) sequencing demonstrated no abnormalities. As other family members carrying the GH-R77C form showed similar alterations at the hormonal level, but presented with normal final height, no GH therapy was given to the boy, but he was followed through his pubertal development which was delayed. At the age of 20 years he reached his final height, which was normal within his parental target height. Functional characterization of the GH-R77C, assessed through activation of Jak2/Stat5 pathway, revealed no differences in the bioactivity between wild-type-GH (wt-GH) and GH-R77C. Detailed structural analysis indicated that the structure of GH-R77C, in terms of disulfide bond formation, is almost identical to that of the wt-GH despite the introduced mutation (Cys77). Previous studies from our group demonstrated a reduced capability of GH-R77C to induce GHR/GH-binding protein (GHBP) gene transcription rate when compared with wt-GH. Therefore, reduced GHR/GHBP expression might well be the possible cause for the partial GH insensitivity found in our patients. In addition, this group of patients deserve further attention because they could represent a distinct clinical entity underlining that an altered GH peptide may also have a direct impact on GHR/GHBP gene expression causing partial GH insensitivity. This might be responsible for the delay of growth and pubertal development. Finally, we clearly demonstrate that GH-R77C is not invariably associated with short stature, but that great care needs to be taken in ascribing growth failure to various heterozygous mutations affecting the GH-IGF axis and that careful functional studies are mandatory.
Resumo:
Autism is a chronic pervasive neurodevelopmental disorder characterized by the early onset of social and communicative impairments as well as restricted, ritualized, stereotypic behavior. The endophenotype of autism includes neuropsychological deficits, for instance a lack of "Theory of Mind" and problems recognizing facial affect. In this study, we report the development and evaluation of a computer-based program to teach and test the ability to identify basic facially expressed emotions. 10 adolescent or adult subjects with high-functioning autism or Asperger-syndrome were included in the investigation. A priori the facial affect recognition test had shown good psychometric properties in a normative sample (internal consistency: rtt=.91-.95; retest reliability: rtt=.89-.92). In a prepost design, one half of the sample was randomly assigned to receive computer treatment while the other half of the sample served as control group. The training was conducted for five weeks, consisting of two hours training a week. The trained individuals improved significantly on the affect recognition task, but not on any other measure. Results support the usefulness of the program to teach the detection of facial affect. However, the improvement found is limited to a circumscribed area of social-communicative function and generalization is not ensured.
Resumo:
PURPOSE: Study of behavior and influence of a multileaf collimator (MLC) on dose calculation, verification, and portal energy spectra in the case of intensity-modulated fields obtained with a step-and-shoot or a dynamic technique. METHODS: The 80-leaf MLC for the Varian Clinac 2300 C/D was implemented in a previously developed Monte Carlo (MC) based multiple source model (MSM) for a 6 MV photon beam. Using this model and the MC program GEANT, dose distributions, energy fluence maps and energy spectra at different portal planes were calculated for three different MLC applications. RESULTS: The comparison of MC-calculated dose distributions in the phantom and portal plane, with those measured with films showed an agreement within 3% and 1.5 mm for all cases studied. The deviations mainly occur in the extremes of the intensity modulation. The MC method allows to investigate, among other aspects, dose components, energy fluence maps, tongue-and-groove effects and energy spectra at portal planes. CONCLUSION: The MSM together with the implementation of the MLC is appropriate for a number of investigations in intensity-modulated radiation therapy (IMRT).
Resumo:
OBJECT: The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. METHODS: Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. RESULTS: Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. CONCLUSIONS: This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.
Resumo:
To evaluate a new high-resolution noncontact biometer (Lenstar; Haag-Streit AG, Koeniz, Switzerland) using optical low-coherence reflectometry and to compare the clinical measurements with those obtained from the IOLMaster (Carl Zeiss, Jena, Germany) and the Pachmumeter (Haag-Streit AG).