57 resultados para Cutthroat trout
Resumo:
Proliferative kidney disease (PKD) is a temperature-dependent disease caused by the myxozoan Tetracapsuloides bryosalmonae. It is an emerging threat to wild brown trout Salmo trutta fario populations in Switzerland. Here we examined (1) how PKD prevalence and pathology in young-of-the-year (YOY) brown trout relate to water temperature, (2) whether wild brown trout can completely recover from T. bryosalmonae-induced renal lesions and eliminate T. bryo - salmonae over the winter months, and (3) whether this rate and/or extent of the recovery is influenced by concurrent infection. A longitudinal field study on a wild brown trout cohort was conducted over 16 mo. YOY and age 1+ fish were sampled from 7 different field sites with various temperature regimes, and monitored for infection with T. bryosalmonae and the nematode Raphidascaris acus. T. bryosamonae was detectable in brown trout YOY from all sampling sites, with similar renal pathology, independent of water temperature. During winter months, recovery was mainly influenced by the presence or absence of concurrent infection with R. acus larvae. While brown trout without R. acus regenerated completely, concurrently infected brown trout showed incomplete recovery, with chronic renal lesions and incomplete translocation of T. bryosalmonae from the renal interstitium into the tubular lumen. Water temperature seemed to influence complete excretion of T. bryosalmonae, with spores remaining in trout from summer-warm rivers, but absent in trout from summer-cool rivers. In the following summer months, we found PKD infections in 1+ brown trout from all investigated river sites. The pathological lesions indicated a reinfection rather than a proliferation of remaining T. bryosalmonae. However, disease prevalence in 1+ trout was lower than in YOY.
Resumo:
To examine the behavior of the estrogenic biomarker vitellogenin (VTG) under the combined impact of estrogens and pathogens, parasite-infected or noninfected rainbow trout were exposed to two doses of 17beta-estradiol (E2). Infected and E2-exposed fish showed significantly lower hepatic VTG mRNA levels than healthy fish. Transcriptome data suggest that this was due to energetic constraints. Reduced responsiveness of the VTG biomarker in parasitized fish might obscure detection of low-level field exposure.
Resumo:
Standard protocols are given for assessing metabolic stability in rainbow trout using the liver S9 fraction. These protocols describe the isolation of S9 fractions from trout livers, evaluation of metabolic stability using a substrate depletion approach, and expression of the result as in vivo intrinsic clearance. Additional guidance is provided on the care and handling of test animals, design and interpretation of preliminary studies, and development of analytical methods. Although initially developed to predict metabolism impacts on chemical accumulation by fish, these procedures can be used to support a broad range of scientific and risk assessment activities including evaluation of emerging chemical contaminants and improved interpretation of toxicity testing results. These protocols have been designed for rainbow trout and can be adapted to other species as long as species-specific considerations are modified accordingly (e.g., fish maintenance and incubation mixture temperature). Rainbow trout is a cold-water species. Protocols for other species (e.g., carp, a warm-water species) can be developed based on these procedures as long as the specific considerations are taken into account.
Resumo:
In the aquatic environment, fish are exposed to various stimuli at once and have developed different response mechanisms to deal with these multiple stimuli. The current study assessed the combined impacts of estrogens and bacterial infection on the physiological status of fish. Juvenile rainbow trout were exposed to two different concentrations of 17 beta-estradiol (E2) (2 or 20 mg/kg feed) and then infected with three concentrations of Yersinia ruckeri, a bacterial pathogen causing massive losses in wild and farmed salmonid populations. Organism-level endpoints to assess the impact of the single and combined treatments included hepatic vitellogenin transcript expression to evaluate the E2 exposure efficiency and survival rate of pathogen-challenged fish. The two E2 doses increased vitellogenin levels within the physiological range. Infection with Y. ruckeri caused mortality of trout, and this effect was significantly enhanced by a simultaneous exposure to high E2 dose. The hormone reduced survival at intermediate and high (10(4) and 10(6) colony forming units, cfu) bacterial concentrations, but not for a low one (10(2) cfu). Analysis of hepatic gene expression profiles by a salmonid 2 k cDNA microarray chip revealed complex regulations of pathways involved in immune responses, stress responses, and detoxicification pathways. E2 markedly reduced the expression of several genes implicated in xenobiotic metabolism. The results suggest that the interaction between pathogen and E2 interfered with the fish's capability of clearing toxic compounds. The findings of the current study add to our understanding of multiple exposure responses in fish.
Resumo:
Aeromonas salmonicida subsp. salmonicida is the etiologic agent of furunculosis, a frequent and significant disease of fisheries worldwide. The disease is largely controlled by commercial oil adjuvanted vaccines containing bacterins. However, the mechanisms leading to a protective immune response remain poorly understood. The type-three secretion system (T3SS) plays a central role in virulence of A. salmonicida subsp. salmonicida and thus may have an influence on the immune response of the host. The aim of this study was to evaluate the role of the T3SS antigens in mounting a protective immune response against furunculosis. Rainbow trout were intraperitoneally vaccinated in two independent experiments with bacterins prepared from a wild-type A. salmonicida strain and an isogenic strain carrying a deletion in the T3SS (ΔascV). Fish were challenged with the wt strain eight weeks after vaccination. In both trials, the survival rate of trout vaccinated with the ΔascV strain was significantly higher (23-28%) in comparison to the group vaccinated with the wt strain. High-throughput proteomics analysis of whole bacteria showed the ascV deletion in the mutant strain resulted in lower expression of all the components of the T3SS, several of which have a potential immunosuppressive activity. In a third experiment, fish were vaccinated with recombinant AcrV (homologous to the protective antigen LcrV of Yersinia) or S-layer protein VapA (control). AcrV vaccinated fish were not protected against a challenge while fish vaccinated with VapA were partially protected. The presence of T3SS proteins in the vaccine preparations decreased the level of protection against A. salmonicida infection and that AcrV was not a protective antigen. These results challenge the hypothesis that mounting specific antibodies against T3SS proteins should bring better protection to fish and demonstrate that further investigations are needed to better understand the mechanisms underlying effective immune responses against A. salmonicida infection.
Resumo:
The aim of the present study was to examine the molecular and organism reaction of rainbow trout, Oncorhynchus mykiss, to the combined impact of two environmental stressors. The two stressors were the myxozoan parasite, Tetracapsuloides bryosalmonae, which is the etiological agent of proliferative kidney disease (PKD) and a natural stressor to salmonid populations, and 17β-estradiol (E2) as prototype of estrogen-active chemical stressors in the aquatic environment. Both stressors, the parasite and estrogenic contaminants, co-exist in Swiss rivers and are discussed as factors contributing to the decline of Swiss brown trout populations over the last decades. Using a microarray approach contrasting parasite-infected and non-infected rainbow trout at low or high estrogen levels, it was observed that molecular response patterns under joint exposure differed from those to the single stressors. More specifically, three major response patterns were present: (i) expression responses of gene transcripts to one stressor are weakened by the presence of the second stressor; (ii) expression responses of gene transcripts to one stressor are enhanced by the presence of the second stressor; (iii) expression responses of gene transcripts at joint treatment are dominated by one of the two stressors. Organism-level responses to concurrent E2 and parasite treatment - assessed through measuring parasite loads in the fish host and cumulative mortalities of trout - were dominated by the pathogen, with no modulating influence of E2. The findings reveal function- and level-specific responses of rainbow trout to stressor combinations, which are only partly predictable from the response to the single stressors.
Resumo:
Farmed and wild salmonids are affected by a variety of skin conditions, some of which have significant economic and welfare implications. In many cases, the causes are not well understood, and one example is cold water strawberry disease of rainbow trout, also called red mark syndrome, which has been recorded in the UK since 2003. To date, there are no internationally agreed methods for describing these conditions, which has caused confusion for farmers and health professionals, who are often unclear as to whether they are dealing with a new or a previously described condition. This has resulted, inevitably, in delays to both accurate diagnosis and effective treatment regimes. Here, we provide a standardized methodology for the description of skin conditions of rainbow trout of uncertain aetiology. We demonstrate how the approach can be used to develop case definitions, using coldwater strawberry disease as an example.
Resumo:
On the basis of the experiments carried out over various years, it was concluded that (1) grayling Thymallus thymallus and brown trout Salmo trutta are resistant to temperature-induced sex reversal at ecologically relevant temperatures, (2) environmental sex reversal is unlikely to cause the persistent sex ratio distortion observed in at least one of the study populations and (3) sex-specific tolerance of temperature-related stress may be the cause of distorted sex ratios in populations of T. thymallus or S. trutta.
Resumo:
While the pathology peer review/pathology working group (PWG) model has long been used in mammalian toxicologic pathology to ensure the accuracy, consistency, and objectivity of histopathology data, application of this paradigm to ecotoxicological studies has thus far been limited. In the current project, the PWG approach was used to evaluate histopathologic sections of gills, liver, kidney, and/or intestines from three previously published studies of diclofenac in trout, among which there was substantial variation in the reported histopathologic findings. The main objectives of this review process were to investigate and potentially reconcile these interstudy differences, and based on the results, to establish an appropriate no observed effect concentration (NOEC). Following a complete examination of all histologic sections and original diagnoses by a single experienced fish pathologist (pathology peer review), a two-day PWG session was conducted to allow members of a four-person expert panel to determine the extent of treatment-related findings in each of the three trout studies. The PWG was performed according to the United States Environmental Protection Agency (US EPA) Pesticide Regulation (PR) 94-5 (EPA Pesticide Regulation, 1994). In accordance with standard procedures, the PWG review was conducted by the non-voting chairperson in a manner intended to minimize bias, and thus during the evaluation, the four voting panelists were unaware of the treatment group status of individual fish and the original diagnoses associated with the histologic sections. Based on the results of this review, findings related to diclofenac exposure included minimal to slightly increased thickening of the gill filament tips in fish exposed to the highest concentration tested (1,000 μg/L), plus a previously undiagnosed finding, decreased hepatic glycogen, which also occurred at the 1,000 μg/L dose level. The panel found little evidence to support other reported effects of diclofenac in trout, and thus the overall NOEC was determined to be >320 μg/L. By consensus, the PWG panel was able to identify diagnostic inconsistencies among and within the three prior studies; therefore this exercise demonstrated the value of the pathology peer review/PWG approach for assessing the reliability of histopathology results that may be used by regulatory agencies for risk assessment.
Resumo:
Transient exposure of brown trout embryos from fertilization until hatch (70 days) to 17β-estradiol (E2) was investigated. Embryos were exposed to 3.8 and 38.0 ng/L E2 for 2h, respectively, under four scenarios: (A) exposure once at the day of fertilization (0 days post-fertilization, dpf), (B) once at eyeing stage (38 dpf), (C) weekly exposure until hatch or (D) bi-weekly exposure until hatch. Endpoints to assess estrogen impact on embryo development were fertilization success, chronological sequence of developmental events, hatching process, larval malformations, heart rate, body length and mortality. Concentration-dependent acceleration of development until median hatch was observed in all exposure scenarios with the strongest effect observed for embryos exposed once at 0 dpf. In addition, the hatching period was significantly prolonged by 4-5 days in groups receiving single estrogen exposures (scenarios A and B). Heart rate on hatching day was significantly depressed with increasing E2 concentrations, with the strongest effect observed for embryos exposed at eyeing stage. Estrogenic exposure at 0 dpf significantly reduced body length at hatch, not depending on whether this was a single exposure or the first of a series (scenarios A and D). The key finding is that even a single, transient E2 exposure during embryogenesis had significant effects on brown trout development. Median hatch, hatching period, heart rate and body length at hatch were found to be highly sensitive biomarkers responsive to estrogenic exposure during embryogenesis. Treatment effects were observable only at the post-hatch stage.
Resumo:
Atenolol is a highly prescribed anti-hypertensive pharmaceutical and a member of the group of β-blockers. It has been detected at concentrations ranging from ng L(-1) to low μg L(-1) in waste and surface waters. The present study aimed to assess the sub-lethal effects of atenolol on rainbow trout (Oncorhynchus mykiss) and to determine its tissue-specific bioconcentration. Juvenile rainbow trout were exposed for 21 and 42 days to three concentration levels of atenolol (1 μg L(-1) - environmentally relevant concentration, 10 μg L(-1), and 1000 μg L(-1)). The fish exposed to 1 μg L(-1) atenolol exhibited a higher lactate content in the blood plasma and a reduced haemoglobin content compared with the control. The results show that exposure to atenolol at concentrations greater than or equal to 10 μg L(-1) significantly reduces both the haematocrit value and the glucose concentration in the blood plasma. The activities of the studied antioxidant enzymes (catalase and superoxide dismutase) were not significantly affected by atenolol exposure, and only the highest tested concentration of atenolol significantly reduced the activity of glutathione reductase. The activities of selected CYP450 enzymes were not affected by atenolol exposure. The histological changes indicate that atenolol has an effect on the vascular system, as evidenced by the observed liver congestion and changes in the pericardium and myocardium. Atenolol was found to have a very low bioconcentration factor (the highest value found was 0.27). The bioconcentration levels followed the order liver>kidney>muscle. The concentration of atenolol in the blood plasma was below the limit of quantification (2.0 ng g(-1)). The bioconcentration factors and the activities of selected CYP450 enzymes suggest that atenolol is not metabolised in the liver and may be excreted unchanged.
Resumo:
This study aimed to investigate the male-to-female morphological and physiological transdifferentiation process in rainbow trout (Oncorhynchus mykiss) exposed to exogenous estrogens. The first objective was to elucidate whether trout develop intersex gonads under exposure to low levels of estrogen. To this end, the gonads of an all-male population of fry exposed chronically (from 60 to 136 days post fertilization--dpf) to several doses (from environmentally relevant 0.01 µg/L to supra-environmental levels: 0.1, 1 and 10 µg/L) of the potent synthetic estrogen ethynylestradiol (EE2) were examined histologically. The morphological evaluations were underpinned by the analysis of gonad steroid (testosterone, estradiol and 11-ketotestosterone) levels and of brain and gonad gene expression, including estrogen-responsive genes and genes involved in sex differentiation in (gonads: cyp19a1a, ER isoforms, vtg, dmrt1, sox9a2; sdY; cyp11b; brain: cyp19a1b, ER isoforms). Intersex gonads were observed from the first concentration used (0.01 µg EE2/L) and sexual inversion could be detected from 0.1 µg EE2/L. This was accompanied by a linear decrease in 11-KT levels, whereas no effect on E2 and T levels was observed. Q-PCR results from the gonads showed downregulation of testicular markers (dmrt1, sox9a2; sdY; cyp11b) with increasing EE2 exposure concentrations, and upregulation of the female vtg gene. No evidence was found for a direct involvement of aromatase in the sex conversion process. The results from this study provide evidence that gonads of male trout respond to estrogen exposure by intersex formation and, with increasing concentration, by morphological and physiological conversion to phenotypic ovaries. However, supra-environmental estrogen concentrations are needed to induce these changes.
Resumo:
Measured rates of intrinsic clearance determined using cryopreserved trout hepatocytes can be extrapolated to the whole animal as a means of improving modeled bioaccumulation predictions for fish. To date, however, the intra- and interlaboratory reliability of this procedure has not been determined. In the present study, three laboratories determined in vitro intrinsic clearance of six reference compounds (benzo[a]pyrene, 4-nonylphenol, di-tert-butyl phenol, fenthion, methoxychlor and o-terphenyl) by conducting substrate depletion experiments with cryopreserved trout hepatocytes from a single source. O-terphenyl was excluded from the final analysis due to nonfirst-order depletion kinetics and significant loss from denatured controls. For the other five compounds, intralaboratory variability (% CV) in measured in vitro intrinsic clearance values ranged from 4.1 to 30%, while interlaboratory variability ranged from 27 to 61%. Predicted bioconcentration factors based on in vitro clearance values exhibited a reduced level of interlaboratory variability (5.3-38% CV). The results of this study demonstrate that cryopreserved trout hepatocytes can be used to reliably obtain in vitro intrinsic clearance of xenobiotics, which provides support for the application of this in vitro method in a weight-of-evidence approach to chemical bioaccumulation assessment.
Resumo:
The efficacy and tolerance of a novel microbial 6-phytase were investigated in rainbow trout, Oncorhynchus mykiss, and Nile tilapia, Oreochromis niloticus. Reference diets were sufficient in available phosphorus (P). The test diet limiting in available P was supplemented with phytase at 500, 1000, or 2000 phytase units/kg feed. The enzyme was effective in increasing total P apparent digestibility coefficient in relation to increasing the dose of phytase in rainbow trout and Nile tilapia. Zinc apparent digestibility improved in relation to phytase supplementation in rainbow trout. P release due to phytase supplementation ranged from 0.06 to 0.18% P/kg feed in rainbow trout and from 0.13 to 0.26% P/kg feed in Nile tilapia. A 58-d performance trial was conducted to evaluate tolerance of fish to phytase supplementation. Dietary treatments consisted of a basal diet without phytase or supplemented with 2000 and 200,000 phytase units/kg feed. Results indicate that this novel microbial 6-phytase is well tolerated by fish. Significant improvements for growth as well as feed conversion ratio were observed when the phytase was fed at 2000 phytase units/kg feed. This phytase is proven efficient in releasing P from phytate and could be added when plants are used for fish meal replacement in diets for salmonid and omnivorous fish.