89 resultados para Cosmic-ray interactions with the Earth
Resumo:
BACKGROUND: Recently, an association of the NFKB1 polymorphism -94ins/delATTG with ulcerative colitis (UC) has been reported. This 4-bp insertion/deletion polymorphism is localized in the promoter region of the NFKB1 gene and appears to be functionally relevant. The aim of the present study was to confirm the association of the -94ins/delATTG (W/D) NFKB1 promoter polymorphism with UC in a population of German origin and to test for a potential association with Crohn's disease (CD). Furthermore, potential interactions of the -94ins/delATTG polymorphism with the IKBL and the IL-1RN genes should be determined. MATERIALS AND METHODS: The study population comprised 630 patients with CD, 365 patients with UC, and 974 healthy controls. Genotyping was performed using polymerase chain reaction and restriction fragment length polymorphism analysis. For statistical evaluation, the chi-square test and the Fisher exact test were used. RESULTS: No significant association of the W/D NFKB1 polymorphism with CD or UC was detected. In addition, no significant interactions between the -94ins/delATTG NFKB1 polymorphism and polymorphisms within the IKBL and the IL-1RN genes, respectively, were found in CD or UC. Also, no significant interactions of the NFKB1 polymorphism with mutations of the CARD15/NOD2 gene and with clinical phenotypes were detected in CD. Moreover, no associations of the NFKB1 polymorphism were found in UC depending on disease localization. CONCLUSIONS: The present study could not confirm the reported association of the -94ins/delATTG NFKB1 polymorphism with UC and also found no evidence for a role of this polymorphism in CD. The results do not give evidence for a role of this NFKB1 polymorphism in the pathogenesis of UC and CD.
Resumo:
The distribution processes of chlorin e6 (CE) and monoaspartyl-chlorin e6 (MACE) between the outer and inner phospholipid monolayers of 1,2-dioleoyl-phosphatidylcholine (DOPC) vesicles were monitored by 1H NMR spectroscopy through analysis of chemical shifts and line widths of the DOPC vesicle resonances. Chlorin adsorption to the outer vesicle monolayer induced changes in the DOPC 1H NMR spectrum. Most pronounced was a split of the N-methyl choline resonance, allowing for separate analysis of inner and outer vesicle layers. Transbilayer distribution of the chlorin compounds was indicated by time-dependent characteristic spectral changes of the DOPC resonances. Kinetic parameters for the flip-flop processes, that is, half-lives and rate constants, were obtained from the experimental data points. In comparison to CE, MACE transbilayer movement was significantly reduced, with MACE remaining more or less attached to the outer membrane layer. The distribution coefficients for CE and MACE between the vesicular and aqueous phase were determined. Both CE and MACE exhibited a high affinity for the vesicular phase. For CE, a positive correlation was found between transfer rate and increasing molar ratio CE/DOPC. Enhanced membrane rigidity induced by increasing amounts of cholesterol into the model membrane was accompanied by a decrease of CE flip-flop rates across the membrane. The present study shows that the movement of porphyrins across membranes can efficiently be investigated by 1H NMR spectroscopy and that small changes in porphyrin structure can have large effects on membrane kinetics.
Resumo:
The aims were to investigate the effect of monoalkyl phosphates (MAPs) and fluoride on dissolution rate of native and saliva-coated hydroxyapatite (HA). Fluoride at 300 mg/l (as NaF) inhibited dissolution of native HA by 12%, while potassium and sodium dodecyl phosphates (PDP, SDP), at 0.1% or higher, inhibited dissolution by 26-34%. MAPs, but not fluoride, also showed persistence of action. MAPs at 0.5% and fluoride at 300 mg/l were then tested separately against HA pre-treated with human saliva for 2 or 18 h. Agents were applied with brushing to half the specimens, and without brushing to the other half. In control (water-treated) specimens, pre-treatment of HA with human saliva reduced dissolution rate on average by 41% (2 h) and 63% (18 h). Brushing did not have a statistically significant effect on dissolution rate of saliva-coated specimens. In brushed specimens, fluoride significantly increased the inhibition due to 2- or 18-hour saliva pre-treatment. It is hypothesised that brushing partially removes the salivary film and allows KOH-soluble calcium fluoride formation at the surfaces of HA particles. Inhibition was reduced by PDP in 2-hour/non-brushed specimens and in 18-hour/brushed specimens. PDP did not affect dissolution rates in the remaining groups and SDP did not affect dissolution rate in any group. Possible reasons for these variable results are discussed. The experiments show that pre-treatment with saliva can significantly modify results of tests on potential anti-erosive agents and it is recommended that saliva pre-treatment should be a routine part of testing such agents.
Resumo:
Context. According to the sequential accretion model (or core-nucleated accretion model), giant planet formation is based first on the formation of a solid core which, when massive enough, can gravitationally bind gas from the nebula to form the envelope. The most critical part of the model is the formation time of the core: to trigger the accretion of gas, the core has to grow up to several Earth masses before the gas component of the protoplanetary disc dissipates. Aims: We calculate planetary formation models including a detailed description of the dynamics of the planetesimal disc, taking into account both gas drag and excitation of forming planets. Methods: We computed the formation of planets, considering the oligarchic regime for the growth of the solid core. Embryos growing in the disc stir their neighbour planetesimals, exciting their relative velocities, which makes accretion more difficult. Here we introduce a more realistic treatment for the evolution of planetesimals' relative velocities, which directly impact on the formation timescale. For this, we computed the excitation state of planetesimals, as a result of stirring by forming planets, and gas-solid interactions. Results: We find that the formation of giant planets is favoured by the accretion of small planetesimals, as their random velocities are more easily damped by the gas drag of the nebula. Moreover, the capture radius of a protoplanet with a (tiny) envelope is also larger for small planetesimals. However, planets migrate as a result of disc-planet angular momentum exchange, with important consequences for their survival: due to the slow growth of a protoplanet in the oligarchic regime, rapid inward type I migration has important implications on intermediate-mass planets that have not yet started their runaway accretion phase of gas. Most of these planets are lost in the central star. Surviving planets have masses either below 10 M⊕ or above several Jupiter masses. Conclusions: To form giant planets before the dissipation of the disc, small planetesimals (~0.1 km) have to be the major contributors of the solid accretion process. However, the combination of oligarchic growth and fast inward migration leads to the absence of intermediate-mass planets. Other processes must therefore be at work to explain the population of extrasolar planets that are presently known.
Resumo:
A search for nonresonant new phenomena, originating from either contact interactions or large extra spatial dimensions, has been carried out using events with two isolated electrons or muons. These events, produced at the LHC in proton-proton collisions at root s = 7 TeV, were recorded by the ATLAS detector. The data sample, collected throughout 2011, corresponds to an integrated luminosity of 4.9 and 5.0 fb(-1) in the e(+)e(-) and mu(+)mu(-) channels, respectively. No significant deviations from the Standard Model expectation are observed. Using a Bayesian approach, 95% confidence level lower limits ranging from 9.0 to 13.9 TeV are placed on the energy scale of llqq contact interactions in the left-left isoscalar model. Lower limits ranging from 2.4 to 3.9 TeV are also set on the string scale in large extra dimension models. After combining these limits with results from a similar search in the diphoton channel, slightly more stringent limits are obtained.
Resumo:
The production of W bosons in association with two jets in proton-proton collisions at a centre-of-mass energy of root s = 7 TeV has been analysed for the presence of double-parton interactions using data corresponding to an integrated luminosity of 36 pb(-1), collected with the ATLAS detector at the Large Hadron Collider. The fraction of events arising from double-parton interactions, f(DP)((D)), has been measured through the p(T) balance between the two jets and amounts to f(DP)((D)) = 0.08 +/- 0.01 (stat.) +/- 0.02 (sys.) for jets with transverse momentum p(T) > 20 GeV and rapidity vertical bar y vertical bar < 2.8. This corresponds to a measurement of the effective area parameter for hard double-parton interactions of sigma(eff) = 15 +/- 3 (stat.)(-3)(+5) (sys.) mb.