40 resultados para Core temperature


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW–SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the field during the 2010 season as part of the NEEM deep ice core drilling project in North Greenland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate and environmental reconstructions from natural archives are important for the interpretation of current climatic change. Few quantitative high-resolution reconstructions exist for South America which is the only land mass extending from the tropics to the southern high latitudes at 56°S. We analyzed sediment cores from two adjacent lakes in Northern Chilean Patagonia, Lago Castor (45°36′S, 71°47′W) and Laguna Escondida (45°31′S, 71°49′W). Radiometric dating (210Pb, 137Cs, 14C-AMS) suggests that the cores reach back to c. 900 BC (Laguna Escondida) and c. 1900 BC (Lago Castor). Both lakes show similarities and reproducibility in sedimentation rate changes and tephra layer deposition. We found eight macroscopic tephras (0.2–5.5 cm thick) dated at 1950 BC, 1700 BC, at 300 BC, 50 BC, 90 AD, 160 AD, 400 AD and at 900 AD. These can be used as regional time-synchronous stratigraphic markers. The two thickest tephras represent known well-dated explosive eruptions of Hudson volcano around 1950 and 300 BC. Biogenic silica flux revealed in both lakes a climate signal and correlation with annual temperature reanalysis data (calibration 1900–2006 AD; Lago Castor r = 0.37; Laguna Escondida r = 0.42, seven years filtered data). We used a linear inverse regression plus scaling model for calibration and leave-one-out cross-validation (RMSEv = 0.56 °C) to reconstruct sub decadal-scale temperature variability for Laguna Escondida back to AD 400. The lower part of the core from Laguna Escondida prior to AD 400 and the core of Lago Castor are strongly influenced by primary and secondary tephras and, therefore, not used for the temperature reconstruction. The temperature reconstruction from Laguna Escondida shows cold conditions in the 5th century (relative to the 20th century mean), warmer temperatures from AD 600 to AD 1150 and colder temperatures from AD 1200 to AD 1450. From AD 1450 to AD 1700 our reconstruction shows a period with stronger variability and on average higher values than the 20th century mean. Until AD 1900 the temperature values decrease but stay slightly above the 20th century mean. Most of the centennial-scale features are reproduced in the few other natural climate archives in the region. The early onset of cool conditions from c. AD 1200 onward seems to be confirmed for this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ice core data from Antarctica provide detailed insights into the characteristics of past climate, atmospheric circulation, as well as changes in the aerosol load of the atmosphere. We present high-resolution records of soluble calcium (Ca2+), non-sea-salt soluble calcium (nssCa2+), and particulate mineral dust aerosol from the East Antarctic Plateau at a depth resolution of 1 cm, spanning the past 800 000 years. Despite the fact that all three parameters are largely dust-derived, the ratio of nssCa2+ to particulate dust is dependent on the particulate dust concentration itself. We used principal component analysis to extract the joint climatic signal and produce a common high-resolution record of dust flux. This new record is used to identify Antarctic warming events during the past eight glacial periods. The phasing of dust flux and CO2 changes during glacial-interglacial transitions reveals that iron fertilization of the Southern Ocean during the past nine glacial terminations was not the dominant factor in the deglacial rise of CO2 concentrations. Rapid changes in dust flux during glacial terminations and Antarctic warming events point to a rapid response of the southern westerly wind belt in the region of southern South American dust sources on changing climate conditions. The clear lead of these dust changes on temperature rise suggests that an atmospheric reorganization occurred in the Southern Hemisphere before the Southern Ocean warmed significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution measurements of chemical impurities and methane concentrations in Greenland ice core samples from the early glacial period allow the extension of annual-layer counted chronologies and the improvement of gas age-ice age difference (Δage) essential to the synchronization of ice core records. We report high-resolution measurements of a 50 m section of the NorthGRIP ice core and corresponding annual layer thicknesses in order to constrain the duration of the Greenland Stadial 22 (GS-22) between Greenland Interstadials (GIs) 21 and 22, for which inconsistent durations and ages have been reported from Greenland and Antarctic ice core records as well as European speleothems. Depending on the chronology used, GS-22 occurred between approximately 89 (end of GI-22) and 83 kyr b2k (onset of GI-21). From annual layer counting, we find that GS-22 lasted between 2696 and 3092 years and was followed by a GI-21 pre-cursor event lasting between 331 and 369 yr. Our layer-based counting agrees with the duration of stadial 22 as determined from the NALPS speleothem record (3250 ± 526 yr) but not with that of the GICC05modelext chronology (2620 yr) or an alternative chronology based on gas-marker synchronization to EPICA Dronning Maud Land ice core. These results show that GICC05modelext overestimates accumulation and/or underestimates thinning in this early part of the last glacial period. We also revise the possible ranges of NorthGRIP Δdepth (5.49 to 5.85 m) and Δage (498 to 601 yr) at the warming onset of GI-21 as well as the Δage range at the onset of the GI-21 precursor warming (523 to 654 yr), observing that temperature (represented by the δ15N proxy) increases before CH4 concentration by no more than a few decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Annually laminated (varved) sediments of proglacial Lake Silvaplana (46 ̊27’N, 9 ̊48’E, 1791 m a.s.l., Engadine, eastern Swiss Alps) provide an excellent archive for quantitative high-resolution (seasonal – annual) reconstruction of high- and lowfrequency climate signals back to AD 1580. The chronology of the core is based on varve counting, Cs-137, Pb-210 and event stratigraphy. In this study we present a reconstruction based on in-situ reflectance spectroscopy. In situ reflectance spectroscopy is known as a cost- and time-effective non destructtive method for semi-quantitative analysis of pigments (e.g., chlorines and carotenoids) and of lithoclastic sediment fractions. Reflectance-dependent absorption (RDA) was measured with a Gretac Macbeth spectrolino at 2 mm resolution. The spectral coverage ranges from 380 nm to 730 nm at 10 nm band resolution. In proglacial Lake Silvaplana, 99% of the sediment is lithoclastic prior to AD 1950. Therefore, we concentrate on absorption features that are characteristic for lithoclastic sediment fractions. In Lake Silvaplana, two significant correlations that are stable in time were found between RDA typical for lithoclastics and meteorological data: (1) the time series R 570 /R 630 (ratio between RDA at 570 nm and 630 nm) of varves in Lake Silvaplana and May to October temperatures at nearby station of Sils correlate highly significantly (calibration period AD 1864 – 1951, r = 0.74, p < 0.01 for 5ptsmoothed series; RMSE is 0.28 ̊C, RE = 0.41 and CE = 0.38), and (2) the minimum reflectance within the 690nm band (min690) data correlate with May to October (calibration period AD 1864 – 1951, r = 0.68, p < 0.01 for 5pt-smoothed series; RMSE = 0.22 ̊C, RE = 0.5, CE = 0.31). Both proxy series (min690nm and R 570 /R 630 values) are internally highly consistent (r = 0.8, p < 0.001). In proglacial Lake Silvaplana the largest amount of sediment is transported by glacial meltwater. The melting season spans approximately from May to October, which gives us a good understanding of the geophysical processes explaining the correlations between lithoclastic proxies and the meteorological data. The reconstructions were extended back to AD 1580 and show a broad corresponddence with fully independent reconstructions from tree rings and documentary data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The many different proxy records from the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core allow for the first time a comparison of nine glacial terminations in great detail. Despite the fact that all terminations cover the transition from a glacial maximum into an interglacial, there are large differences between single terminations. For some terminations, Antarctic temperature increased only moderately, while for others, the amplitude of change at the termination was much larger. For the different terminations, the rate of change in temperature is more similar than the magnitude or duration of change. These temperature changes were accompanied by vast changes in dust and sea salt deposition all over Antarctica. Here we investigate the phasing between a South American dust proxy (non-sea-salt calcium flux, nssCa2+), a sea ice proxy (sea salt sodium flux, ssNa+) and a proxy for Antarctic temperature (deuterium, δD). In particular, we look into whether a similar sequence of events applies to all terminations, despite their different characteristics. All proxies are derived from the EPICA Dome C ice core, resulting in a relative dating uncertainty between the proxies of less than 20 years. At the start of the terminations, the temperature (δD) increase and dust (nssCa2+ flux) decrease start synchronously. The sea ice proxy (ssNa+ flux), however, only changes once the temperature has reached a particular threshold, approximately 5°C below present day temperatures (corresponding to a δD value of −420‰). This reflects to a large extent the limited sensitivity of the sea ice proxy during very cold periods with large sea ice extent. At terminations where this threshold is not reached (TVI, TVIII), ssNa+ flux shows no changes. Above this threshold, the sea ice proxy is closely coupled to the Antarctic temperature, and interglacial levels are reached at the same time for both ssNa+ and δD. On the other hand, once another threshold at approximately 2°C below present day temperature is passed (corresponding to a δD value of −402‰), nssCa2+ flux has reached interglacial levels and does not change any more, despite further warming. This threshold behaviour most likely results from a combination of changes to the threshold friction velocity for dust entrainment and to the distribution of surface wind speeds in the dust source region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lack of quantitative high resolution paleoclimate data from the Southern Hemisphere limits the ability to examine current trends within the context of long-term natural climate variability. This study presents a temperature reconstruction for southern Tasmania based on analyses of a sediment core from Duckhole Lake (43.365°S, 146.875°E). The relationship between non-destructive whole core scanning reflectance spectroscopy measurements in the visible spectrum (380–730 nm) and the instrumental temperature record (ad 1911–2000) was used to develop a calibration-in-time reflectance spectroscopy-based temperature model. Results showed that a trough in reflectance from 650 to 700 nm, which represents chlorophyll and its derivatives, was significantly correlated to annual mean temperature. A calibration model was developed (R = 0.56, p auto < 0.05, root mean squared error of prediction (RMSEP) = 0.21°C, five-year filtered data, calibration period 1911–2000) and applied down-core to reconstruct annual mean temperatures in southern Tasmania over the last c. 950 years. This indicated that temperatures were initially cool c. ad 1050, but steadily increased until the late ad 1100s. After a brief cool period in the ad 1200s, temperatures again increased. Temperatures steadily decreased during the ad 1600s and remained relatively stable until the start of the 20th century when they rapidly decreased, before increasing from ad 1960s onwards. Comparisons with high resolution temperature records from western Tasmania, New Zealand and South America revealed some similarities, but also highlighted differences in temperature variability across the mid-latitudes of the Southern Hemisphere. These are likely due to a combination of factors including the spatial variability in climate between and within regions, and differences between records that document seasonal (i.e. warm season/late summer) versus annual temperature variability. This highlights the need for further records from the mid-latitudes of the Southern Hemisphere in order to constrain past natural spatial and seasonal/annual temperature variability in the region, and to accurately identify and attribute changes to natural variability and/or anthropogenic activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pío XI, the largest glacier of the Southern Patagonia Icefield, reached its neoglacial maximum extent in 1994 and is one of the few glaciers in that area which is not retreating. In view of the recent warming it is important to understand glacier responses to climate changes. Due to its remoteness and the harsh conditions in Patagonia, no systematic mass balance studies have been performed. In this study we derived net accumulation rates for the period 2000–2006 from a 50 m (33.2 4 m weq) ice core collected in the accumulation area of Pío XI (2600 m a.s.l., 49°16'40"S, 73°21'14"W). Borehole temperatures indicate near temperate ice, but the average melt percent is only 16 ± 14%. Records of stable isotopes are well preserved and were used for identification of annual layers. Net accumulation rates range from 3.4–7.1 water equivalent (m weq) with an average of 5.8 m weq, comparable to precipitation amounts at the Chilean coast, but not as high as expected for the Icefield. Ice core stable isotope data correlate well with upper air temperatures and may be used as temperature proxy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available ice core air-δ15N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial–interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML – a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas–ice depth offset during the Laschamp event (~41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model–δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of the International Partnerships in Ice Core Sciences, one of the most important targets is to retrieve an Antarctic ice core that extends over the last 1.5 million years (i.e. an ice core that enters the climate era when glacial–interglacial cycles followed the obliquity cycles of the earth). In such an ice core the annual layers of the oldest ice would be thinned by a factor of about 100 and the climatic information of a 10 000 yr interval would be contained in less than 1 m of ice. The gas record in such an Antarctic ice core can potentially reveal the role of greenhouse gas forcing on these 40 000 yr cycles. However, besides the extreme thinning of the annual layers, also the long residence time of the trapped air in the ice and the relatively high ice temperatures near the bedrock favour diffusive exchanges. To investigate the changes in the O2 / N2 ratio, as well as the trapped CO2 concentrations, we modelled the diffusive exchange of the trapped gases O2, N2 and CO2 along the vertical axis. However, the boundary conditions of a potential drilling site are not yet well constrained and the uncertainties in the permeation coefficients of the air constituents in the ice are large. In our simulations, we have set the drill site ice thickness at 2700 m and the bedrock ice temperature at 5–10 K below the ice pressure melting point. Using these conditions and including all further uncertainties associated with the drill site and the permeation coefficients, the results suggest that in the oldest ice the precessional variations in the O2 / N2 ratio will be damped by 50–100%, whereas CO2 concentration changes associated with glacial–interglacial variations will likely be conserved (simulated damping 5%). If the precessional O2 / N2 signal will have disappeared completely in this future ice core, orbital tuning of the ice-core age scale will be limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Greenland NEEM (North Greenland Eemian Ice Drilling) operation in 2010 provided the first opportunity to combine trace-gas measurements by laser spectroscopic instruments and continuous-flow analysis along a freshly drilled ice core in a field-based setting. We present the resulting atmospheric methane (CH4) record covering the time period from 107.7 to 9.5 ka b2k (thousand years before 2000 AD). Companion discrete CH4 measurements are required to transfer the laser spectroscopic data from a relative to an absolute scale. However, even on a relative scale, the high-resolution CH4 data set significantly improves our knowledge of past atmospheric methane concentration changes. New significant sub-millennial-scale features appear during interstadials and stadials, generally associated with similar changes in water isotopic ratios of the ice, a proxy for local temperature. In addition to the midpoint of Dansgaard–Oeschger (D/O) CH4 transitions usually used for cross-dating, sharp definition of the start and end of these events brings precise depth markers (with ±20 cm uncertainty) for further cross-dating with other palaeo- or ice core records, e.g. speleothems. The method also provides an estimate of CH4 rates of change. The onsets of D/O events in the methane signal show a more rapid rate of change than their endings. The rate of CH4 increase associated with the onsets of D/O events progressively declines from 1.7 to 0.6 ppbv yr−1 in the course of marine isotope stage 3. The largest observed rate of increase takes place at the onset of D/O event #21 and reaches 2.5 ppbv yr−1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The end of the Last Glacial Maximum (Termination I), roughly 20 thousand years ago (ka), was marked by cooling in the Northern Hemisphere, a weakening of the Asian monsoon, a rise in atmospheric CO2 concentrations and warming over Antarctica. The sequence of events associated with the previous glacial–interglacial transition (Termination II), roughly 136 ka, is less well constrained. Here we present high-resolution records of atmospheric CO2 concentrations and isotopic composition of N2—an atmospheric temperature proxy—from air bubbles in the EPICA Dome C ice core that span Termination II. We find that atmospheric CO2 concentrations and Antarctic temperature started increasing in phase around 136 ka, but in a second phase of Termination II, from 130.5 to 129 ka, the rise in atmospheric CO2 concentrations lagged that of Antarctic temperature unequivocally. We suggest that during this second phase, the intensification of the low-latitude hydrological cycle resulted in the development of a CO2 sink, which counteracted the CO2 outgassing from the Southern Hemisphere oceans over this period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to compare the sea-surface conditions in the Black Sea during the Holocene and Eemian, sapropelic parts of marine core 22-GC3 (42°13.53′N/36°29.55′E, 838 m water depth) were studied for organic-walled dinoflagellate cyst content. The record shows a change from freshwater/brackish assemblages (Pyxidinopsis psilata, Spiniferites cruciformis, and Caspidinium rugosum) to more marine assemblages (Lingulodinium machaerophorum and Spiniferites ramosus complex) during each interglacial, due to the inflow of saline Mediterranean water. The lacustrine–marine transitions in 22-GC3 occurred at ~ 8.3 cal kyr BP during the early Holocene and ~ 128 kyr BP during the early Eemian, slightly later compared to the onset of interglacial conditions on the adjacent land. Dinoflagellate cyst assemblages reveal higher sea-surface salinity (~ 28–30) (e.g. Spiniferites pachydermus, Bitectatodinium tepikiense, and Spiniferites mirabilis) around ~ 126.5–121 kyr BP in comparison to the Holocene (~ 15–20) as well as relatively high sea-surface temperature (e.g. Tuberculodinium vancampoae, S. pachydermus, and S. mirabilis) especially at ~ 127.6–125.3 kyr BP. Establishment of high sea-surface salinity during the Eemian correlates very well with reconstructed relatively high global sea-level and is explained as a combined effect of increased Mediterranean supply and high temperatures at the beginning of the last interglacial. The observed changes in the dinocyst record highlight the importance of nutrients for the composition of the Eemian and Holocene dinocyst assemblages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There were several centennial-scale fluctuations in the climate and oceanography of the North Atlantic region over the past 1,000 years, including a period of relative cooling from about AD 1450 to 1850 known as the Little Ice Age1. These variations may be linked to changes in solar irradiance, amplified through feedbacks including the Atlantic meridional overturning circulation2. Changes in the return limb of the Atlantic meridional overturning circulation are reflected in water properties at the base of the mixed layer south of Iceland. Here we reconstruct thermocline temperature and salinity in this region from AD 818 to 1780 using paired δ18O and Mg/Ca ratio measurements of foraminifer shells from a subdecadally resolved marine sediment core. The reconstructed centennial-scale variations in hydrography correlate with variability in total solar irradiance. We find a similar correlation in a simulation of climate over the past 1,000 years. We infer that the hydrographic changes probably reflect variability in the strength of the subpolar gyre associated with changes in atmospheric circulation. Specifically, in the simulation, low solar irradiance promotes the development of frequent and persistent atmospheric blocking events, in which a quasi-stationary high-pressure system in the eastern North Atlantic modifies the flow of the westerly winds. We conclude that this process could have contributed to the consecutive cold winters documented in Europe during the Little Ice Age.