29 resultados para Copper (Cu) sensitive DNAzyme


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used electrochemical scanning tunneling microscopy to study the intercalation of hydrogen into a Cu(111) model electrode under reactive (in operando) conditions. Hydrogen evolution causes hydrogen intermediates to migrate into the copper lattice as function of the applied potential and the resulting current density. This H-inclusion is demonstrated to be reversible. The presence of subsurface hydrogen leads to a significant surface relaxation/reconstruction affecting both the geometric and electronic structure of the electrode surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution chemical depth profiling measurements of copper films are presented. The 10 μm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Techniques of electrode modification by copper deposits are developed that allow obtaining compact bulk quasi-epitaxial deposits on basal Pt(hkl) single crystal faces. The issues of the deposit roughness and characterization are discussed. Problems of drying and transferring electrodes with copper deposits into other solutions are considered. The obtained deposits are used for CO2 electroreduction in propylene carbonate and acetonitrile solutions of 0.1 M TBAPF6, and the relationship between the electrode surface structure and its electrocatalytic activity in CO2 electroreduction is discussed. We also demonstrate that the restructuring of Cu deposits occurs upon CO2 electroreduction. Complementary reactivity studies are presented for bare Pt(hkl) and Cu(hkl) single crystal electrodes. Cu-modified Pt(hkl) electrodes display the highest activity as compared to bare Pt(hkl) and Cu(hkl). Particularly, the Cu/Pt(110) electrode shows the highest activity among the electrodes under study. Such high activity of Cu/Pt(hkl) electrodes can be explained not only by the increasing actual surface area but also by structural effects, namely by the presence of a large amount of specific defect sites (steps, kinks) on Cu crystallites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New coordination polymers [M(Pht)(4-MeIm)2(H2O)]n (M=Co (1), Cu (2); Pht2−=dianion of o-phthalic acid; 4-MeIm=4-methylimidazole) have been synthesized and characterized by IR spectroscopy, X-ray crystallography, thermogravimetric analysis and magnetic measurements. The crystal structures of 1 and 2 are isostructural and consist of [M(4-MeIm)2(H2O)] building units linked in infinite 1D helical chains by 1,6-bridging phthalate ions which also act as chelating ligands through two O atoms from one carboxylate group in the case of 1. In complex 1, each Co(II) atom adopts a distorted octahedral N2O4 geometry being coordinated by two N atoms from two 4-MeIm, three O atoms of two phthalate residues and one O atom of a water molecule, whereas the square-pyramidal N2O3 coordination of the Cu(II) atom in 2 includes two N atoms of N-containing ligands, two O atoms of two carboxylate groups from different Pht, and a water molecule. An additional strong O–H⋯O hydrogen bond between a carboxylate group of the phthalate ligand and a coordinated water molecule join the 1D helical chains to form a 2D network in both compounds. The thermal dependences of the magnetic susceptibilities of the polymeric helical Co(II) chain compound 1 were simulated within the temperature range 20–300 K as a single ion case, whereas for the Cu(II) compound 2, the simulations between 25 and 300 K, were made for a linear chain using the Bonner–Fisher approximation. Modelling the experimental data of compound 1 with MAGPACK resulted in: g=2.6, |D|=62 cm−1. Calculations using the Bonner–Fisher approximation gave the following result for compound 2: g=2.18, J=–0.4 cm−1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new coordination polymers [M(Pht)(1-MeIm)2]n (where M=Cu (1), Zn (2), Co (3); Pht2−=dianion of o-phthalic acid; 1-MeIm=1-methylimidazole) and two compounds [M(1-MeIm)6](HPht)2 · 2H2O (M=Co (4), Ni (5)) have been synthesized and characterized by X-ray crystallography. The structures of 1–3 (2 is isostructural to 3) consist of [M(1-MeIm)2] building units connected by 1,6-bridging phthalate ions to form infinite chains. In complex 1, each copper(II) center adopts a square coordination mode of N2O2 type by two O atoms from different phthalate ions and two N atoms of 1-MeIm, whereas in 3 two independent metal atoms are tetrahedrally (N2O2) coordinated to a pair of Pht ligands and a pair of 1-MeIm molecules. There are only van der Waals interactions between the chains in 1, while the three-dimensional network in 3 is assembled by C–H⋯O contacts. In contrast to polymers 1–3 the structures of 4 and 5 (complexes are also isostructural) are made up of the [M(1-MeIm)6]2+ cation, two hydrogen phthalate anions (HPht−) and two H2O solvate molecules. The coordination around each metal(II) atom is octahedral with six nitrogen atoms of 1-MeIm. Extended hydrogen bonding networks embracing the solvate water molecules and a phthalate residue as well as the weak C–H⋯O interactions stabilize the three-dimensional structures. Magnetic studies clearly show that the magnetic ions do not interact with each other. Furthermore, in compound 4 we have another example of a highly anisotropic Co2+ ion with a rhombic g-tensor and large zero-field-splitting. The complexes were also characterized by IR and 1H NMR spectroscopy, thermogravimetric analysis, and all data are discussed in the terms of known structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional oxalate-based {[Ru(bpy)3][Cu2xNi2(1-x)(ox)3]}n (0≤ x ≤ 1, ox = C2O42-, bpy = 2,2‘bipyridine) were synthesized. The structure was determined for x = 1 by X-ray diffraction on single crystal. The compound crystallizes in the cubic space group P4132. It shows a three-dimensional 10-gon 3-connected (10,3) anionic network where copper(II) has an unusual tris(bischelated) environment. X-ray powder diffraction patterns and their Rietveld refinement show that all the compounds along the series are isostructural and single-phased. According to X-ray absorption spectroscopy, copper(II) and nickel(II) have an octahedral environment, respectively elongated and trigonally distorted. As shown by natural circular dichroism, the optically active forms of {[Ru(bpy)3][CuxNi2(1-x)(ox)3]}n are obtained starting from resolved Δ- or Λ-[Ru(bpy)3]2+. The Curie−Weiss temperatures range between −55 (x = 1) and −150 K (x = 0). The antiferromagnetic exchange interaction thus decreases when the copper contents increases in agreement with the crystallographic structure of the compounds and the electronic structure of the metal ions. At low temperature, the compounds exhibit complex long-range ordered magnetic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the syntheses and characterization of two new copper(II) diphosphonates: [NH3(CH2)2NH3]2[Cu2(hedp)2]·H2O (1) and [NH3CH(CH3)CH2NH3]2[Cu2(hedp)2] (2) (hedp = 1-hydroxyethylidenediphosphonate). Both compounds exhibit similar one-dimensional linear chain structures. The symmetrical {Cu2(hedp)2} dimers are connected by edge-shared {CuO5} square pyramids and form infinite chains. The Cu(II) ions are alternately bridged by O–P–O groups and O atoms. The Cu–O–Cu angles are 95.8(1) and 96.1(1)° for 1 and 2, respectively. Their magnetic properties show moderately strong antiferromagnetic interactions in both compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of the first one-dimensional hetero-metallic compound containing thiocyanate as bridging ligands,{[Cu(cyclam)][Co(NCS)4]}n, has been determined, togetherwith a preliminary study of the magnetic properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of copper(II) chloroacetate (1d) with pyrazole (Hpz) mainly yielded the mononuclear compound [Cu(μ-ClCH2COO)2(Hpz)2] (2m), which self-assembled generating a one-dimensional coordination polymer. Moreover, the concomitant isolation of the tetranuclear [{Cu2(μ-pz)(μ-OCH2COO)(Hpz)(MeOH)}2(μ-ClCH2COO)2] (3t) and hexanuclear [{Cu3(μ3-OH)(μ-pz)3(Hpz)2}2(μ-ClCH2COO)2](Cl)2 (4h) species evidenced the occurrence of a peculiar, previously unreported, dehydrochlorination reaction and the formation of the trinuclear triangular moiety [Cu3(μ3-OH)(μ-pz)3]. Theoretical calculations based on density functional theory including solvation effects indicate a possible pathway for the formation of 3t. Interestingly, besides the energy minimum corresponding to 3t, a further relative energy minimum is found for a species which can be considered a possible reaction intermediate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactions of 4,4′-bipyridine with selected trinuclear triangular copper(II) complexes, [Cu3(μ3-OH)(μ-pz)3(RCOO)2Lx], [pz = pyrazolate anion, R = CH3(CH2)n (2 ≤ n ≤ 5); L = H2O, MeOH, EtOH] yielded a series of 1D coordination polymers (CPs) based on the repetition of [Cu3(μ3-OH)(μ-pz)3] secondary building units joined by bipyridine. The CPs were characterized by conventional analytical methods (elemental analyses, ESI-MS, IR spectra) and single crystal XRD determinations. An unprecedented 1D CP, generated through the bipyridine bridging hexanuclear copper clusters moieties, two 1D CPs presenting structural analogies, and two monodimensional tapes having almost exactly superimposable structures, were obtained. In one case, the crystal packing makes evident the presence of small, not-connected pores, accounting for ca. 6% of free cell volume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was undertaken to identify changes in some important proteins involved in CO2 fixation (Rubisco, Rubisco activase (RA), Rubisco binding protein (RBP)), NH4+ assimilation (glutamine synthetase (GS) and glutamate synthase (GOGAT)), using immunoblotting, and in the antioxidative defense as a result of Cu or Mn excess in barley leaves (Hordeum vulgare L. cv. Obzor). Activities and isoenzyme patterns of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase (CAT), as well as the levels of ascorbate (ASC), non-protein sulfhydryl groups, hydrogen peroxide and oxidative damage to proteins were determined. Data were correlated to the accumulation of Cu or Mn in the leaves after 5 days supply of heavy metal (HM) excess in the nutrient solution. In the highest Cu excess (1500 μM), Rubisco LS and SS were reduced considerably whereas under the highest Mn concentrations (18,300 μM) only minor changes in Rubisco subunits were detected. The RBP was diminished under the highest concentrations of both Cu or Mn. The bands of RA changed differently comparing Cu and Mn toxicity. GS decreased and GOGAT was absent under the highest concentration of Cu. At Mn excess Fd-GOGAT diminished whereas GS was not apparently changed. The development of toxicity symptoms corresponded to an accumulation of Cu or Mn in the leaves and to a gradual increase in protein carbonylation, a lower SOD activity and elevated CAT and GPX activities. APX activity was diminished under Mn toxicity and was not changed under Cu excess. Generally, changes in the isoenzyme profiles were similar under both toxicities. An accumulation of H2O2 was observed only at Mn excess. Contrasting changes in the low-molecular antioxidants were detected when comparing both toxicities. Cu excess affected mainly the non-protein SH groups, while Mn influenced the ASC content. Oxidative stress under Cu or Mn toxicity was most probably the consequence of depletion in low-molecular antioxidants as a result of their involvement in detoxification processes and disbalance in antioxidative enzymes. The link between heavy metal accumulation in leaves, leading to different display of oxidative stress, and changes in individual chloroplast proteins is discussed in the article.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bitopic ligand, 4-(3,5-dimethylpyrazol-4-yl)-1,2,4-triazole (Hpz-tr) (1), containing two different heterocyclic moieties was employed for the design of copper(II)–molybdate solids under hydrothermal conditions. In the multicomponent CuII/Hpz-tr/MoVI system, a diverse set of coordination hybrids, [Cu(Hpz-tr)2SO4]·3H2O (2), [Cu(Hpz-tr)Mo3O10] (3), [Cu4(OH)4(Hpz-tr)4Mo8O26]·6H2O (4), [Cu(Hpz-tr)2Mo4O13] (5), and [Mo2O6(Hpz-tr)]·H2O (6), was prepared and characterized. A systematic investigation of these systems in the form of a ternary crystallization diagram approach was utilized to show the influence of the molar ratios of starting reagents, the metal (CuII and MoVI) sources, the temperature, etc., on the reaction products outcome. Complexes 2–4 dominate throughout a wide crystallization range of the composition triangle, while the other two compounds 5 and 6 crystallize as minor phases in a narrow concentration range. In the crystal structures of 2–6, the organic ligand behaves as a short [N–N]-triazole linker between metal centers Cu···Cu in 2–4, Cu···Mo in 5, and Mo···Mo in 6, while the pyrazolyl function remains uncoordinated. This is the reason for the exceptional formation of low-dimensional coordination motifs: 1D for 2, 4, and 6 and 2D for 3 and 5. In all cases, the pyrazolyl group is involved in H bonding (H-donor/H-acceptor) and is responsible for π–π stacking, thus connecting the chain and layer structures in more complicated H-bonding architectures. These compounds possess moderate thermal stability up to 250–300 °C. The magnetic measurements were performed for 2–4, revealing in all three cases antiferromagnetic exchange interactions between neighboring CuII centers and long-range order with a net moment below Tc of 13 K for compound 4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gastrin-releasing peptide receptor (GRPr) is an important molecular target for the visualization and therapy of tumors and can be targeted with radiolabeled bombesin derivatives. The present study aims to develop statine-based bombesin receptor antagonists suitable for labeling with 64Cu for imaging by positron emission tomography (PET). The potent GRPr antagonist D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 was conjugated to the sarcophagine (3,6,10,13,16,19-hexaazabicyclo[6.6.6] icosane=Sar) derivative 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid (MeCOSar) via PEG4 (LE1) and PEG2 (LE2) spacers and radiolabeled with 64Cu2+ with >95% yield and specific activities of about 100 MBq/nmol. Both Cu(II) conjugates have high affinity for GRPr (IC50: natCu-LE1, 1.4±0.1 nM; natCu-LE2, 3.8±0.6 nM). The antagonistic properties of both conjugates were confirmed by Ca2+-flux measurements. Biodistribution studies of Cu-64-LE1 exhibited specific targeting of the tumor (19.6±4.7% IA/g at 1 h p.i.) and GRPr-positive organs. Biodistribution and PET images at 4 and 24 h postinjection showed increasing tumor-to-background ratios with time. This was illustrated by the acquisition of PET images showing high tumor-to-normal tissue contrast. This study demonstrates the high affinity of the MeCOSar-PEGx-bombesin conjugates to GRPr. The stability of 64Cu complexes of MeCOSar, the long half-life of 64Cu, and the suitable biodistribution profile of the 64Cu-labeled peptides lead to PET images of high contrast suitable for potential translation into the clinic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and density functional theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on quantum theory of atoms in molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively explained by the Cu-Cu superexchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers.