50 resultados para Conjugate Vaccine
Resumo:
Moraxella catarrhalis (M. catarrhalis) is a human-restricted commensal of the normal bacterial flora in the upper respiratory tract of children, and - during the previous two decades - has been recognised as a true human pathogen. M. catarrhalis is the third most common pathogen causing acute otitis media in children, which is the most common reason to visit a paediatrician during childhood. Acute otitis media thus causes a high clinical and economical burden. With the introduction of the conjugate pneumococcal vaccines the microbiomic pattern in the nasopharyngeal flora of children has changed, and the frequency of isolation of M. catarrhalis has increased. Compared to adults, children are more often colonised with M. catarrhalis. Over the last three decades there has been a dramatic increase in the acquisition of β-lactam resistance in M. catarrhalis. Today 95-100% of clinically isolated M. catarrhalis produce β-lactamase. It is thus desirable to reduce the burden of M. catarrhalis disease by developing a vaccine. There are several potential vaccine antigen candidates in different stages of development, but none of them has entered clinical trials at the present time.
Resumo:
Vaccination in HIV-infected children is often less effective than in healthy children. The goal of this study was to assess vaccine responses to hepatitis A virus (HAV) in HIV-infected children. Children of the Swiss Mother and Child HIV Cohort Study (MoCHiV) were enrolled prospectively. Recommendations for initial, catch-up, and additional HAV immunizations were based upon baseline antibody concentrations and vaccine history. HAV IgG was assessed by enzyme-linked immunosorbent assay (ELISA) with a protective cutoff value defined as ≥10 mIU/ml. Eighty-seven patients were included (median age, 11 years; range, 3.4 to 21.2 years). Forty-two patients were seropositive (48.3%) for HAV. Among 45 (51.7%) seronegative patients, 36 had not received any HAV vaccine dose and were considered naïve. Vaccine responses were assessed after the first dose in 29/35 naïve patients and after the second dose in 33/39 children (25 initially naïve patients, 4 seronegative patients, and 4 seropositive patients that had already received 1 dose of vaccine). Seroconversion was 86% after 1 dose and 97% after 2 doses, with a geometric mean concentration of 962 mIU/ml after the second dose. A baseline CD4(+) T cell count below 750 cells/μl significantly reduced the post-2nd-dose response (P = 0.005). Despite a high rate of seroconversion, patients with CD4(+) T cell counts of <750/μl had lower anti-HAV antibody concentrations. This may translate into a shorter protection time. Hence, monitoring humoral immunity may be necessary to provide supplementary doses as needed.
Resumo:
A hybrid structure of a synthetic dendronized polymer, two different types of enzymes (superoxide dismutase and horseradish peroxidase), and a fluorescent dye (fluorescein) was synthesized. Thereby, a single polymer chain carried multiple copies of the two enzymes and the fluorescein. The entire attachment chemistry is based on UV/vis-quantifiable bis-aryl hydrazone bond formation that allows direct quantification of bound molecules: 60 superoxide dismutase, 120 horseradish peroxidase, and 20 fluorescein molecules on an average polymer chain of 2000 repeating units. To obtain other enzyme ratios the experimental conditions were altered accordingly. Moreover, it could be shown that both enzymes remained fully active and catalyzed a two-step cascade reaction.
Resumo:
Conventional hepatitis B vaccines do not elicit adequate antibody production in 5-10% vaccinees. This trial tests the ability of a third-generation vaccine, containing PreS1 and PreS2 antigens in addition to the S antigen, to elicit seroprotective titres in documented non- and low-responders, compared with those to a conventional vaccine. In the primary population of non-responders (<10 IU/l anti-HBs antibodies after > or = 4 previous injections of conventional vaccine) an enhanced antibody response was seen to additional injections of the third-generation vaccine compared with a conventional vaccine (absolute difference 14.9%; P = 0.006). Enhanced antibody responses were also found in a population that included low responders.
Resumo:
Aerosols are the most promising non-injectable method of measles vaccination studied so far and their efficacy is thought to be comparable to injected vaccine. We conducted a systematic review up to May 2006 to examine the immunogenicity and safety of aerosolized measles vaccine (Edmonston-Zagreb or Schwarz strains) 1 month or more after vaccination. Where possible we estimated pooled serological response rates and odds ratios (with 95% confidence intervals, CI) comparing aerosolized and subcutaneous vaccines in children in three age groups and adults. We included seven randomized trials, four non-randomized trials and six uncontrolled studies providing serological outcome data on 2887 individuals. In children below 10 months, the studies were heterogeneous. In four comparative studies, seroconversion rates were lower with aerosolized than with subcutaneous vaccine and in two of these the difference was unlikely to be due to chance. In children 10-36 months, the pooled seroconversion rate with aerosolized vaccine was 93.5% (89.4-97.7%) and 97.1% (92.4-100%) with subcutaneous vaccine (odds ratio 0.27, 0.04-1.62). In 5-15-year olds the studies were heterogeneous. In all comparative studies aerosolized vaccine was more immunogenic than subcutaneous. Reported side effects were mild. Aerosolized measles vaccine appears to be equally or more immunogenic than subcutaneous vaccine in children aged 10 months and older. Large randomized trials are needed to establish the efficacy and safety of aerosolized measles vaccine as primary and booster doses.
Resumo:
Due to antigenic differences between BVDV1 and BVDV2 strains, both pestivirus species are included in U.S. vaccines. The efficacy of these vaccines in preventing acute infections is evaluated based on reduction of clinical disease. While high virulence BVDV2 strains are used in U.S. vaccine efficacy studies, the BVDV1 strain used (NY-1) produces very little in the way of clinical disease. In order to identify a BVDV1 strain that generates a more pronounced clinical presentation, three field strains were compared to NY-1. Infection with two of the field strains resulted in significantly more pronounced clinical disease compared to NY-1. Decreasing the inoculation of a field strain by two logs did not significantly change clinical presentation.
Resumo:
INTRODUCTION: Periodontitis is a common infectious disease to which Porphyromonas gingivalis has been closely linked, in which the attachment tissues of the teeth and their alveolar bone housing are destroyed. We conducted a study to determine if immunization using a purified antigen could alter the onset and progression of the disease. METHODS: Using the ligature-induced model of periodontitis in Macaca fascicularis, we immunized five animals with cysteine protease purified from P. gingivalis and used an additional five animals as controls. Alveolar bone loss was measured by digital subtraction radiography. RESULTS: Immunization induced high titers of specific immunoglobuin G serum antibodies that were opsonic. Total bacterial load, levels of P. gingivalis in subgingival plaque and levels of prostaglandin E(2) in gingival crevicular fluid were significantly reduced. Onset and progression of alveolar bone loss was inhibited by approximately 50%. No manifestations of toxicity were observed. CONCLUSIONS: Immunization using a purified protein antigen from P. gingivalis inhibits alveolar bone destruction in a ligature-induced periodontitis model in M. fascicularis.
Resumo:
BACKGROUND: 90% of newborns infected perinatally will develop chronic hepatitis B infection with the risk of liver cirrhosis or hepatocellular carcinoma. In Switzerland, screening of all pregnant women for hepatitis B virus (HBV) has been recommended since 1983. Neonates at risk for perinatally acquired HBV are passively and actively immunised immediately after birth as well as at 1 and 6 months of age. The objective of this study was to evaluate the proportion of newborns immunised in accordance with the proposed vaccination schedule. METHODS: Patient records of 3997 mothers who gave birth to a liveborn infant during a two-year period at Zürich University Hospital were screened by computer. 128 women were identified as HBsAg positive or anti-HBc alone positive. Of 133 infants born to these mothers, complete data were available for 94 (71%). RESULTS: Immunisation was started in 88 infants (94%), but only in 78 (83%) within the first 24 hours of life. 85 (90%) received the 2nd immunisation but only 72 (77%) within the given time limit. 80 (85%) of the infants received the 3rd immunisation but only 69 (73%) within the correct time limit. In summary, only 51 (54%) of the infants at risk for HBV infection were immunised correctly (immunoglobulin within 24 hours and active prophylaxis at 0, 1 and 6 months). CONCLUSIONS: The success of the immunisation strategy following maternal screening and selective immunisation of newborns at risk for HBV infection is limited for various reasons (lack of screening results at birth, problems with correct documentation and communication). To overcome these drawbacks, selective vaccination strategy should be improved and general vaccination strategy, including infants, should be reconsidered.
Resumo:
Cancer immunotherapy has made great progress because of advances in immunology and molecular biology. Increased understanding of mechanisms by which lung cancer cells escape the immune system and recognition of key tumor antigens and immune system components involved in tumor ignorance have led to the development of a variety of lung cancer vaccines. Immunotherapy has advanced from using nonspecific immunomodulatory agents to lung cancer-specific tumor antigens and tumor cell-derived vaccines. While understanding of immune processes and malignancy has improved, there is great opportunity for further research of vaccine therapies in non-small-cell lung cancer. Herein, we review the development and evolution of early lung cancer vaccine trials.
Resumo:
BACKGROUND: Human immunodeficiency virus (HIV)-infected children are at increased risk of infections caused by vaccine preventable pathogens, and specific immunization recommendations have been issued. METHODS: A prospective national multicenter study assessed how these recommendations are followed in Switzerland and how immunization history correlates with vaccine immunity. RESULTS: Among 87 HIV-infected children (mean age: 11.1 years) followed in the 5 Swiss university hospitals and 1 regional hospital, most (76%) had CD4 T cells >25%, were receiving highly active antiretroviral treatment (79%) and had undetectable viral load (60%). Immunization coverage was lower than in the general population and many lacked serum antibodies to vaccine-preventable pathogens, including measles (54%), varicella (39%), and hepatitis B (65%). The presence of vaccine antibodies correlated most significantly with having an up-to-date immunization history (P<0.05). An up-to-date immunization history was not related to age, immunologic stage, or viremia but to the referral medical center. CONCLUSIONS: All pediatricians in charge of HIV-infected children are urged to identify missing immunizations in this high-risk population.
Resumo:
Diarrhoea caused by enterotoxigenic Escherichia coli (ETEC) requires adhesion of microorganisms to enterocytes. Hence, a promising approach to immunoprophylaxis is to elicit antibodies against colonisation factor antigens (CFAs). Genes encoding the most prevalent ETEC-specific surface antigens were cloned into Vibrio cholerae and Salmonella vaccine strains. Expression of surface antigens was assessed by electron-microscopy. Whereas negative staining was effective in revealing CFA/I and CS3, but not CS6, immunolabelling allowed identification of all surface antigens examined. The V. cholerae vaccine strain CVD103 did not express ETEC-specific colonisation factors, whereas CVD103-HgR expressed CS3 only. However, expression of both CFA/I and CS3 was demonstrated in Salmonella Ty21a.
Resumo:
The frequency of PRRSV corresponding to live vaccines and wild-type was determined in 902 pigs from North-Western Germany submitted for post-mortem examination. Overall, 18.5% of the samples were positive for the EU wild-type virus. EU genotype vaccine virus was detected in 1.3% and the NA genotype vaccine virus in 8.9% of all samples. The detection of the EU vaccine was significantly higher in pigs vaccinated with the corresponding vaccine (OR=9.4). Pigs vaccinated with NA genotype had significantly higher detection chances for the corresponding vaccine virus when compared to non-vaccinated animals (OR=3.34) animals, however, NA vaccine was also frequently detected in non-vaccinated pigs. Concluding, the dynamics of NA genotype vaccine and EU wild-type virus corresponds with studies on PRRSV spread in endemically infected herds. The potential of spontaneous spread of the NA genotype vaccine should be considered in the planning of eradication programs.
Resumo:
Echinococcosis is a worldwide zoonotic parasitic disease of humans and various herbivorous domestic animals (intermediate hosts) transmitted by the contact with wild and domestic carnivores (definitive hosts), mainly foxes and dogs. Recently, a vaccine was developed showing high levels of protection against one parasite haplotype (G1) of Echinococcus granulosus, and its potential efficacy against distinct parasite variants or species is still unclear. Interestingly, the EG95 vaccine antigen is a secreted glycosylphosphatydilinositol (GPI)-anchored protein containing a fibronectin type III domain, which is ubiquitous in modular proteins involved in cell adhesion. EG95 is highly expressed in oncospheres, the parasite life cycle stage which actively invades the intermediate hosts. After amplifying and sequencing the complete CDS of 57 Echinococcus isolates belonging to 7 distinct species, we uncovered a large amount of genetic variability, which may influence protein folding. Two positively selected sites are outside the vaccine epitopes, but are predicted to alter protein conformation. Moreover, phylogenetic analyses indicate that EG95 isoform evolution is convergent with regard to the number of beta-sheets and alpha-helices. We conclude that having a variety of EG95 isoforms is adaptive for Echinococcus parasites, in terms of their ability to invade different hosts, and we propose that a mixture of isoforms could possibly maximize vaccine efficacy.