42 resultados para Computer-Based Training System
Resumo:
Four Staphylococcus aureus-Escherichia coli shuttle vectors were constructed for gene expression and production of tagged fusion proteins. Vectors pBUS1-HC and pTSSCm have no promoter upstream of the multiple cloning site (MCS), and this allows study of genes under the control of their native promoters, and pBUS1-Pcap-HC and pTSSCm-Pcap contain the strong constitutive promoter of S. aureus type 1 capsule gene 1A (Pcap) upstream of a novel MCS harboring codons for the peptide tag Arg-Gly-Ser-hexa-His (rgs-his6). All plasmids contained the backbone derived from pBUS1, including the E. coli origin ColE1, five copies of terminator rrnB T1, and tetracycline resistance marker tet(L) for S. aureus and E. coli. The minimum pAMα1 replicon from pBUS1 was improved through either complementation with the single-strand origin oriL from pUB110 (pBUS1-HC and pBUS1-Pcap-HC) or substitution with a pT181-family replicon (pTSSCm and pTSSCm-Pcap). The new constructs displayed increased plasmid yield and segregational stability in S. aureus. Furthermore, pBUS1-Pcap-HC and pTSSCm-Pcap offer the potential to generate C-terminal RGS-His6 translational fusions of cloned genes using simple molecular manipulation. BcgI-induced DNA excision followed by religation converts the TGA stop codon of the MCS into a TGC codon and links the rgs-his6 codons to the 3' end of the target gene. The generation of the rgs-his6 codon-fusion, gene expression, and protein purification were demonstrated in both S. aureus and E. coli using the macrolide-lincosamide-streptogramin B resistance gene erm(44) inserted downstream of Pcap. The new His tag expression system represents a helpful tool for the direct analysis of target gene function in staphylococcal cells.
Resumo:
Background: It is yet unclear if there are differences between using electronic key feature problems (KFPs) or electronic case-based multiple choice questions (cbMCQ) for the assessment of clinical decision making. Summary of Work: Fifth year medical students were exposed to clerkships which ended with a summative exam. Assessment of knowledge per exam was done by 6-9 KFPs, 9-20 cbMCQ and 9-28 MC questions. Each KFP consisted of a case vignette and three key features (KF) using “long menu” as question format. We sought students’ perceptions of the KFPs and cbMCQs in focus groups (n of students=39). Furthermore statistical data of 11 exams (n of students=377) concerning the KFPs and (cb)MCQs were compared. Summary of Results: The analysis of the focus groups resulted in four themes reflecting students’ perceptions of KFPs and their comparison with (cb)MCQ: KFPs were perceived as (i) more realistic, (ii) more difficult, (iii) more motivating for the intense study of clinical reasoning than (cb)MCQ and (iv) showed an overall good acceptance when some preconditions are taken into account. The statistical analysis revealed that there was no difference in difficulty; however KFP showed a higher discrimination and reliability (G-coefficient) even when corrected for testing times. Correlation of the different exam parts was intermediate. Conclusions: Students perceived the KFPs as more motivating for the study of clinical reasoning. Statistically KFPs showed a higher discrimination and higher reliability than cbMCQs. Take-home messages: Including KFPs with long menu questions into summative clerkship exams seems to offer positive educational effects.
Resumo:
BACKGROUND: Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. RESULTS: NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. CONCLUSIONS: PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.
Resumo:
Surgical navigation systems visualize the positions and orientations of surgical instruments and implants as graphical overlays onto a medical image of the operated anatomy on a computer monitor. The orthopaedic surgical navigation systems could be categorized according to the image modalities that are used for the visualization of surgical action. In the so-called CT-based systems or 'surgeon-defined anatomy' based systems, where a 3D volume or surface representation of the operated anatomy could be constructed from the preoperatively acquired tomographic data or through intraoperatively digitized anatomy landmarks, a photorealistic rendering of the surgical action has been identified to greatly improve usability of these navigation systems. However, this may not hold true when the virtual representation of surgical instruments and implants is superimposed onto 2D projection images in a fluoroscopy-based navigation system due to the so-called image occlusion problem. Image occlusion occurs when the field of view of the fluoroscopic image is occupied by the virtual representation of surgical implants or instruments. In these situations, the surgeon may miss part of the image details, even if transparency and/or wire-frame rendering is used. In this paper, we propose to use non-photorealistic rendering to overcome this difficulty. Laboratory testing results on foamed plastic bones during various computer-assisted fluoroscopybased surgical procedures including total hip arthroplasty and long bone fracture reduction and osteosynthesis are shown.
Resumo:
PURPOSE Laser range scanners (LRS) allow performing a surface scan without physical contact with the organ, yielding higher registration accuracy for image-guided surgery (IGS) systems. However, the use of LRS-based registration in laparoscopic liver surgery is still limited because current solutions are composed of expensive and bulky equipment which can hardly be integrated in a surgical scenario. METHODS In this work, we present a novel LRS-based IGS system for laparoscopic liver procedures. A triangulation process is formulated to compute the 3D coordinates of laser points by using the existing IGS system tracking devices. This allows the use of a compact and cost-effective LRS and therefore facilitates the integration into the laparoscopic setup. The 3D laser points are then reconstructed into a surface to register to the preoperative liver model using a multi-level registration process. RESULTS Experimental results show that the proposed system provides submillimeter scanning precision and accuracy comparable to those reported in the literature. Further quantitative analysis shows that the proposed system is able to achieve a patient-to-image registration accuracy, described as target registration error, of [Formula: see text]. CONCLUSIONS We believe that the presented approach will lead to a faster integration of LRS-based registration techniques in the surgical environment. Further studies will focus on optimizing scanning time and on the respiratory motion compensation.
Resumo:
One of the most consistent findings in the neuroscience of autism is hypoactivation of the fusiform gyrus (FG) during face processing. In this study the authors examined whether successful facial affect recognition training is associated with an increased activation of the FG in autism. The effect of a computer-based program to teach facial affect identification was examined in 10 individuals with high-functioning autism. Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) changes in the FG and other regions of interest, as well as behavioral facial affect recognition measures, were assessed pre- and posttraining. No significant activation changes in the FG were observed. Trained participants showed behavioral improvements, which were accompanied by higher BOLD fMRI signals in the superior parietal lobule and maintained activation in the right medial occipital gyrus.
Resumo:
The medical training model is currently immersed in a process of change. The new paradigm is intended to be more effective, more integrated within the healthcare system, and strongly oriented towards the direct application of knowledge to clinical practice. Compared with the established training system based on certification of the completion of a series or rotations and stays in certain healthcare units, the new model proposes a more structured training process based on the gradual acquisition of specific competences, in which residents must play an active role in designing their own training program. Training based on competences guarantees more transparent, updated and homogeneous learning of objective quality, and which can be homologated internationally. The tutors play a key role as the main directors of the process, and institutional commitment to their work is crucial. In this context, tutors should receive time and specific formation to allow the evaluation of training as the cornerstone of the new model. New forms of objective summative and training evaluation should be introduced to guarantee that the predefined competences and skills are effectively acquired. The free movement of specialists within Europe is very desirable and implies that training quality must be high and amenable to homologation among the different countries. The Competency Based training in Intensive Care Medicine in Europe program is our main reference for achieving this goal. Scientific societies in turn must impulse and facilitate all those initiatives destined to improve healthcare quality and therefore specialist training. They have the mission of designing strategies and processes that favor training, accreditation and advisory activities with the government authorities.
Resumo:
BACKGROUND/AIMS: Switzerland’s drug policy model has always been unique and progressive, but there is a Need to reassess this system in a rapidly changing world. The IMPROVE study was conducted to gain understanding of the attitudes and beliefs towards opioid maintenance therapy (OMT) in Switzerland with regards to quality and Access to treatment. To obtain a “real-world” view on OMT, the study approached its goals from two different angles: from the perspectives of the OMT patients and of the physicians who treat patients with maintenance therapy. The IMPROVE study collected a large body of data on OMT in Switzerland. This paper presents a small subset of the dataset, focusing on the research design and methodology, the profile of the participants and the responses to several key questions addressed by the questionnaires. METHODS: IMPROVE was an observational, questionnaire-based cross-sectional study on OMT conducted in Switzerland. Respondents consisted of OMT patients and treating physicians from various regions of the country. Data were collected using questionnaires in German and French. Physicians were interviewed by phone with a computer-based questionnaire. Patients self-completed a paper-based questionnaire at the physicians’ Offices or OMT treatment centres. RESULTS: A total of 200 physicians and 207 patients participated in the study. Liquid methadone and methadone tablets or capsules were the medications most commonly prescribed by physicians (60% and 20% of patient load, respectively) whereas buprenorphine use was less frequent. Patients (88%) and physicians (83%) were generally satisfied with the OMT currently offered. The current political framework and lack of training or information were cited as determining factors that deter physicians from engaging in OMT. About 31% of OMT physicians interviewed were ≥60 years old, indicating an ageing population. Diversion and misuse were considered a significant problem in Switzerland by 45% of the physicians. CONCLUSION: The subset of IMPROVE data presented gives a present-day, real-life overview of the OMT landscape in Switzerland. It represents a valuable resource for policy makers, key opinion leaders and drug addiction researchers and will be a useful basis for improving the current Swiss OMT model.
Resumo:
A rapid and simple DNA labeling system has been developed for disposable microarrays and has been validated for the detection of 117 antibiotic resistance genes abundant in Gram-positive bacteria. The DNA was fragmented and amplified using phi-29 polymerase and random primers with linkers. Labeling and further amplification were then performed by classic PCR amplification using biotinylated primers specific for the linkers. The microarray developed by Perreten et al. (Perreten, V., Vorlet-Fawer, L., Slickers, P., Ehricht, R., Kuhnert, P., Frey, J., 2005. Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J.Clin.Microbiol. 43, 2291-2302.) was improved by additional oligonucleotides. A total of 244 oligonucleotides (26 to 37 nucleotide length and with similar melting temperatures) were spotted on the microarray, including genes conferring resistance to clinically important antibiotic classes like β-lactams, macrolides, aminoglycosides, glycopeptides and tetracyclines. Each antibiotic resistance gene is represented by at least 2 oligonucleotides designed from consensus sequences of gene families. The specificity of the oligonucleotides and the quality of the amplification and labeling were verified by analysis of a collection of 65 strains belonging to 24 species. Association between genotype and phenotype was verified for 6 antibiotics using 77 Staphylococcus strains belonging to different species and revealed 95% test specificity and a 93% predictive value of a positive test. The DNA labeling and amplification is independent of the species and of the target genes and could be used for different types of microarrays. This system has also the advantage to detect several genes within one bacterium at once, like in Staphylococcus aureus strain BM3318, in which up to 15 genes were detected. This new microarray-based detection system offers a large potential for applications in clinical diagnostic, basic research, food safety and surveillance programs for antimicrobial resistance.
Resumo:
Individuals with intellectual disabilities (ID) often struggle with learning how to read. Reading difficulties seem to be the most common secondary condition of ID. Only one in five children with mild or moderate ID achieves even minimal literacy skills. However, literacy education for children and adolescents with ID has been largely overlooked by researchers and educators. While there is little research on reading of children with ID, many training studies have been conducted with other populations with reading difficulties. The most common approach of acquiring literacy skills consists of sophisticated programs that train phonological skills and auditory perception. Only few studies investigated the influence of implicit learning on literacy skills. Implicit learning processes seem to be largely independent of age and IQ. Children are sensitive to the statistics of their learning environment. By frequent word reading they acquire implicit knowledge about the frequency of single letters and letter patterns in written words. Additionally, semantic connections not only improve the word understanding, but also facilitate storage of words in memory. Advances in communication technology have introduced new possibilities for remediating literacy skills. Computers can provide training material in attractive ways, for example through animations and immediate feedback .These opportunities can scaffold and support attention processes central to learning. Thus, the aim of this intervention study was to develop and implement a computer based word-picture training, which is based on statistical and semantic learning, and to examine the training effects on reading, spelling and attention in children and adolescents (9-16 years) diagnosed with mental retardation (general IQ 74). Fifty children participated in four to five weekly training sessions of 15-20 minutes over 4 weeks, and completed assessments of attention, reading, spelling, short-term memory and fluid intelligence before and after training. After a first assessment (T1), the entire sample was divided in a training group (group A) and a waiting control group (group B). After 4 weeks of training with group A, a second assessment (T2) was administered with both training groups. Afterwards, group B was trained for 4 weeks, before a last assessment (T3) was carried out in both groups. Overall, the results showed that the word-picture training led to substantial gains on word decoding and attention for both training groups. These effects were preserved six weeks later (group A). There was also a clear tendency of improvement in spelling after training for both groups, although the effect did not reach significance. These findings highlight the fact that an implicit statistical learning training in a playful way by motivating computer programs can not only promote reading development, but also attention in children with intellectual disabilities.
Resumo:
Introduction Language is the most important mean of communication and plays a central role in our everyday life. Brain damage (e.g. stroke) can lead to acquired disorders of lan- guage affecting the four linguistic modalities (i.e. reading, writing, speech production and comprehension) in different combinations and levels of severity. Every year, more than 5000 people (Aphasie Suisse) are affected by aphasia in Switzerland alone. Since aphasia is highly individual, the level of difficulty and the content of tasks have to be adapted continuously by the speech therapists. Computer-based assignments allow patients to train independently at home and thus increasing the frequency of ther- apy. Recent developments in tablet computers have opened new opportunities to use these devices for rehabilitation purposes. Especially older people, who have no prior experience with computers, can benefit from the new technologies. Methods The aim of this project was to develop an application that enables patients to train language related tasks autonomously and, on the other hand, allows speech therapists to assign exercises to the patients and to track their results online. Seven categories with various types of assignments were implemented. The application has two parts which are separated by a user management system into a patient interface and a therapist interface. Both interfaces were evaluated using the SUS (Subject Usability Scale). The patient interface was tested by 15 healthy controls and 5 patients. For the patients, we also collected tracking data for further analysis. The therapist interface was evaluated by 5 speech therapists. Results The SUS score are xpatients = 98 and xhealthy = 92.7 (median = 95, SD = 7, 95% CI [88.8, 96.6]) in case of the patient interface and xtherapists = 68 in case of the therapist interface. Conclusion Both, the patients and the healthy subjects, attested high SUS scores to the patient interface. These scores are considered as "best imaginable". The therapist interface got a lower SUS score compared to the patient interface, but is still considered as "good" and "usable". The user tracking system and the interviews revealed that there is room for improvements and inspired new ideas for future versions.
Resumo:
Studies revealing transfer effects of working memory (WM) training on non-trained cognitive performance of children hold promising implications for scholastic learning. However, the results of existing training studies are not consistent and provoke debates about the potential and limitations of cognitive enhancement. To examine the influence of individual differences on training outcomes is a promising approach for finding causes for such inconsistencies. In this study, we implemented WM training in an elementary school setting. The aim was to investigate near and far transfer effects on cognitive abilities and academic achievement and to examine the moderating effects of a dispositional and a regulative temperament factor, neuroticism and effortful control. Ninetynine second-graders were randomly assigned to 20 sessions of computer-based adaptiveWMtraining, computer-based reading training, or a no-contact control group. For the WM training group, our analyses reveal near transfer on a visual WM task, far transfer on a vocabulary task as a proxy for crystallized intelligence, and increased academic achievement in reading and math by trend. Considering individual differences in temperament, we found that effortful control predicts larger training mean and gain scores and that there is a moderation effect of both temperament factors on post-training improvement: WM training condition predicted higher post-training gains compared to both control conditions only in children with high effortful control or low neuroticism. Our results suggest that a short but intensive WM training program can enhance cognitive abilities in children, but that sufficient selfregulative abilities and emotional stability are necessary for WM training to be effective.
Resumo:
What's known on the subject? And what does the study add? We have previously shown that percutaneous radiofrequency ablation guided by image-fusion technology allows for precise needle placement with real time ultrasound superimposed with pre-loaded imaging, removing the need for real-time CT or MR guidance. Emerging technology also allows real-time tracking of a treatment needle within an organ in a virtually created 3D format. To our knowledge, this is the first study utilising a sophisticated ultrasound-based navigation system that uses both image-fusion and real-time probe-tracking technologies for in-vivo renal ablative intervention.
Resumo:
To develop a semiquantitative MRI-based scoring system (HOAMS) of hip osteoarthritis (OA) and test its reliability and validity.