35 resultados para Compact Wideband Antenna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONCLUSIONS: Speech understanding is better with the Baha Divino than with the Baha Compact in competing noise from the rear. No difference was found for speech understanding in quiet. Subjectively, overall sound quality and speech understanding were rated better for the Baha Divino. OBJECTIVES: To compare speech understanding in quiet and in noise and subjective ratings for two different bone-anchored hearing aids: the recently developed Baha Divino and the Baha Compact. PATIENTS AND METHODS: Seven adults with bilateral conductive or mixed hearing losses who were users of a bone-anchored hearing aid were tested with the Baha Compact in quiet and in noise. Tests were repeated after 3 months of use with the Baha Divino. RESULTS: There was no significant difference between the two types of Baha for speech understanding in quiet when tested with German numbers and monosyllabic words at presentation levels between 50 and 80 dB. For speech understanding in noise, an advantage of 2.3 dB for the Baha Divino vs the Baha Compact was found, if noise was emitted from a loudspeaker to the rear of the listener and the directional microphone noise reduction system was activated. Subjectively, the Baha Divino was rated statistically significantly better in terms of overall sound quality.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Epidemiological studies show that elevated levels of particulate matter in ambient air are highly correlated with respiratory and cardiovascular diseases. Atmospheric particles originate from a large number of sources and have a highly complex and variable composition. An assessment of their potential health risks and the identification of the most toxic particle sources would require a large number of investigations. Due to ethical and economic reasons, it is desirable to reduce the number of in vivo studies and to develop suitable in vitro systems for the investigation of cell-particle interactions. METHODS We present the design of a new particle deposition chamber in which aerosol particles are deposited onto cell cultures out of a continuous air flow. The chamber allows for a simultaneous exposure of 12 cell cultures. RESULTS Physiological conditions within the deposition chamber can be sustained constantly at 36-37°C and 90-95% relative humidity. Particle deposition within the chamber and especially on the cell cultures was determined in detail, showing that during a deposition time of 2 hr 8.4% (24% relative standard deviation) of particles with a mean diameter of 50 nm [mass median diameter of 100 nm (geometric standard deviation 1.7)] are deposited on the cell cultures, which is equal to 24-34% of all charged particles. The average well-to-well variability of particles deposited simultaneously in the 12 cell cultures during an experiment is 15.6% (24.7% relative standard deviation). CONCLUSIONS This particle deposition chamber is a new in vitro system to investigate realistic cell-particle interactions at physiological conditions, minimizing stress on the cell cultures other than from deposited particles. A detailed knowledge of particle deposition characteristics on the cell cultures allows evaluating reliable dose-response relationships. The compact and portable design of the deposition chamber allows for measurements at any particle sources of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the first analysis of the input impedance and radiation properties of a dipole antenna, placed on top of Fan 's three-dimensional electromagnetic bandgap (EBG) structure, (Applied Physics Letters, 1994) constructed using a high dielectric constant ceramic. The best position of the dipole on the EBG surface is determined following impedance and radiation pattern analyses. Based on this optimum configuration an integrated Schottky heterodyne detector was designed, manufactured and tested from 0.48 to 0.52 THz. The main antenna features were not degraded by the high dielectric constant substrate due to the use of the EBG approach. Measured radiation patterns are in good agreement with the predicted ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a conceptual prototype model of a focal plane array unit for the STEAMR instrument, highlighting the challenges presented by the required high relative beam proximity of the instrument and focus on how edge-diffraction effects contribute to the array's performance. The analysis was carried out as a comparative process using both PO & PTD and MoM techniques. We first highlight general differences between these computational techniques, with the discussion focusing on diffractive edge effects for near-field imaging reflectors with high truncation. We then present the results of in-depth modeling analyses of the STEAMR focal plane array followed by near-field antenna measurements of a breadboard model of the array. The results of these near-field measurements agree well with both simulation techniques although MoM shows slightly higher complex beam coupling to the measurements than PO & PTD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces an area- and power-efficient approach for compressive recording of cortical signals used in an implantable system prior to transmission. Recent research on compressive sensing has shown promising results for sub-Nyquist sampling of sparse biological signals. Still, any large-scale implementation of this technique faces critical issues caused by the increased hardware intensity. The cost of implementing compressive sensing in a multichannel system in terms of area usage can be significantly higher than a conventional data acquisition system without compression. To tackle this issue, a new multichannel compressive sensing scheme which exploits the spatial sparsity of the signals recorded from the electrodes of the sensor array is proposed. The analysis shows that using this method, the power efficiency is preserved to a great extent while the area overhead is significantly reduced resulting in an improved power-area product. The proposed circuit architecture is implemented in a UMC 0.18 [Formula: see text]m CMOS technology. Extensive performance analysis and design optimization has been done resulting in a low-noise, compact and power-efficient implementation. The results of simulations and subsequent reconstructions show the possibility of recovering fourfold compressed intracranial EEG signals with an SNR as high as 21.8 dB, while consuming 10.5 [Formula: see text]W of power within an effective area of 250 [Formula: see text]m × 250 [Formula: see text]m per channel.