84 resultados para Coma
Resumo:
Context. The Rosetta encounter with comet 67P/Churyumov-Gerasimenko provides a unique opportunity for an in situ, up-close investigation of ion-neutral chemistry in the coma of a weakly outgassing comet far from the Sun. Aims. Observations of primary and secondary ions and modeling are used to investigate the role of ion-neutral chemistry within the thin coma. Methods. Observations from late October through mid-December 2014 show the continuous presence of the solar wind 30 km from the comet nucleus. These and other observations indicate that there is no contact surface and the solar wind has direct access to the nucleus. On several occasions during this time period, the Rosetta/ROSINA/Double Focusing Mass Spectrometer measured the low-energy ion composition in the coma. Organic volatiles and water group ions and their breakup products (masses 14 through 19), CO2+ (masses 28 and 44) and other mass peaks (at masses 26, 27, and possibly 30) were observed. Secondary ions include H3O+ and HCO+ (masses 19 and 29). These secondary ions indicate ion-neutral chemistry in the thin coma of the comet. A relatively simple model is constructed to account for the low H3O+/H2O+ and HCO+/CO+ ratios observed in a water dominated coma. Results from this simple model are compared with results from models that include a more detailed chemical reaction network. Results. At low outgassing rates, predictions from the simple model agree with observations and with results from more complex models that include much more chemistry. At higher outgassing rates, the ion-neutral chemistry is still limited and high HCO+/CO+ ratios are predicted and observed. However, at higher outgassing rates, the model predicts high H3O+/H2O+ ratios and the observed ratios are often low. These low ratios may be the result of the highly heterogeneous nature of the coma, where CO and CO2 number densities can exceed that of water.
Resumo:
OBJECTIVE Our aim was to assess the diagnostic and predictive value of several quantitative EEG (qEEG) analysis methods in comatose patients. METHODS In 79 patients, coupling between EEG signals on the left-right (inter-hemispheric) axis and on the anterior-posterior (intra-hemispheric) axis was measured with four synchronization measures: relative delta power asymmetry, cross-correlation, symbolic mutual information and transfer entropy directionality. Results were compared with etiology of coma and clinical outcome. Using cross-validation, the predictive value of measure combinations was assessed with a Bayes classifier with mixture of Gaussians. RESULTS Five of eight measures showed a statistically significant difference between patients grouped according to outcome; one measure revealed differences in patients grouped according to the etiology. Interestingly, a high level of synchrony between the left and right hemisphere was associated with mortality on intensive care unit, whereas higher synchrony between anterior and posterior brain regions was associated with survival. The combination with the best predictive value reached an area-under the curve of 0.875 (for patients with post anoxic encephalopathy: 0.946). CONCLUSIONS EEG synchronization measures can contribute to clinical assessment, and provide new approaches for understanding the pathophysiology of coma. SIGNIFICANCE Prognostication in coma remains a challenging task. qEEG could improve current multi-modal approaches.
Resumo:
As Rosetta was orbiting comet 67P/Churyumov-Gerasimenko, the Ion and Electron Sensor detected negative particles with angular distributions like those of the concurrently measured solar wind protons but with fluxes of only about 10% of the proton fluxes and energies of about 90% of the proton energies. Using well-known cross sections and energy-loss data, it is determined that the fluxes and energies of the negative particles are consistent with the production of H- ions in the solar wind by double charge exchange with molecules in the coma.
Resumo:
Context. During the most recent perihelion passage in 2009 of comet 67P/Churyumov-Gerasimenko (67P), ground-based observations showed an anisotropic dust coma where jet-like features were detected at similar to 1.3 AU from the Sun. The current perihelion passage is exceptional as the Rosetta spacecraft is monitoring the nucleus activity since March 2014, when a clear dust coma was already surrounding the nucleus at 4.3 AU from the Sun. Subsequently, the OSIRIS camera also witnessed an outburst in activity between April 27 and 30, and since mid-July, the dust coma at rh similar to 3.7-3.6 AU preperihelion is clearly non-isotropic, pointing to the existence of dust jet-like features. Aims. We aim to ascertain on the nucleus surface the origin of the dust jet-like features detected as early as in mid-July 2014. This will help to establish how the localized comet nucleus activity compares with that seen in previous apparitions and will also help following its evolution as the comet approaches its perihelion, at which phase most of the jets were detected from ground-based observations. Determining these areas also allows locating them in regions on the nucleus with spectroscopic or geomorphological distinct characteristics. Methods. Three series of dust images of comet 67P obtained with the Wide Angle Camera (WAC) of the OSIRIS instrument onboard the Rosetta spacecraft were processed with different enhancement techniques. This was made to clearly show the existence of jet-like features in the dust coma, whose appearance toward the observer changed as a result of the rotation of the comet nucleus and of the changing observing geometry from the spacecraft. The position angles of these features in the coma together with information on the observing geometry, nucleus shape, and rotation, allowed us to determine the most likely locations on the nucleus surface where the jets originate from. Results. Geometrical tracing of jet sources indicates that the activity of the nucleus of 67P gave rise during July and August 2014 to large-scale jet-like features from the Hapi, Hathor, Anuket, and Aten regions, confirming that active regions may be present on the nucleus localized at 60. northern latitude as deduced from previous comet apparitions. There are also hints that large-scale jets observed from the ground are possibly composed, at their place of origin on the nucleus surface, of numerous small-scale features.
Resumo:
Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency's Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10(-10) to 10(-7) kilograms, and 48 grains of mass 10(-5) to 10(-2) kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 +/- 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.
Resumo:
Context. During September and October 2014, the OSIRIS cameras onboard the ESA Rosetta mission detected millions of single particles. Many of these dust particles appear as long tracks (due to both the dust proper motion and the spacecraft motion during the exposure time) with a clear brightness periodicity. Aims. We interpret the observed periodic features as a rotational and translational motion of aspherical dust grains. Methods. By counting the peaks of each track, we obtained statistics of a rotation frequency. We compared these results with the rotational frequency predicted by a model of aspherical dust grain dynamics in a model gas flow. By testing many possible sets of physical conditions and grain characteristics, we constrained the rotational properties of dust grains. Results. We analyzed on the motion of rotating aspherical dust grains with different cross sections in flow conditions corresponding to the coma of 67P/Churyumov-Gerasimenko qualitatively and quantitatively. Based on the OSIRIS observations, we constrain the possible physical parameters of the grains.
Resumo:
With a combination of the Direct Simulation Monte Carlo (DSMC) calculation and test particle computation, the ballistic transport process of the hydroxyl radicals and oxygen atoms produced by photodissociation of water molecules in the coma of comet 67P/Churyumov-Gerasimenko is modelled. We discuss the key elements and essential features of such simulations which results can be compared with the remote-sensing and in situ measurements of cometary gas coma from the Rosetta mission at different orbital phases of this comet.
Resumo:
Direct Simulation Monte Carlo (DSMC) is a powerful numerical method to study rarefied gas flows such as cometary comae and has been used by several authors over the past decade to study cometary outflow. However, the investigation of the parameter space in simulations can be time consuming since 3D DSMC is computationally highly intensive. For the target of ESA's Rosetta mission, comet 67P/Churyumov-Gerasimenko, we have identified to what extent modification of several parameters influence the 3D flow and gas temperature fields and have attempted to establish the reliability of inferences about the initial conditions from in situ and remote sensing measurements. A large number of DSMC runs have been completed with varying input parameters. In this work, we present the simulation results and conclude on the sensitivity of solutions to certain inputs. It is found that among cases of water outgassing, the surface production rate distribution is the most influential variable to the flow field.
Resumo:
An unusual case is presented of a tourist who developed fatal cerebral air embolism, pneumomediastinum and pneumopericardium while ascending from low altitude to Europe's highest railway station. Presumably the air embolism originated from rupture of the unsuspected bronchogenic cyst as a result of pressure changes during the ascent. Cerebral air embolism has been observed during surgery, in scuba diving accidents, submarine escapes and less frequently during exposure to very high altitude. People with known bronchogenic cysts should be informed about the risk of cerebral air embolism and surgical removal should be considered. Cerebral air embolism is a rare cause of coma and stroke in all activities with rapid air pressure changes, including alpine tourism, as our unfortunate tourist illustrates.
Resumo:
Encephalitis is caused by a variety of conditions, including infections of the brain by a wide range of pathogens. A substantial number of cases of encephalitis defy all attempts at identifying a specific cause. Little is known about the long-term prognosis in patients with encephalitis of unknown aetiology, which complicates their management during the acute illness. To learn more about the prognosis of patients with encephalitis of unknown aetiology, patients in whom no aetiology could be identified were examined in a large, single-centre encephalitis cohort. In addition to analysing the clinical data of the acute illness, surviving patients were assessed by telephone interview a minimum of 2 years after the acute illness by applying a standardized test battery. Of the patients with encephalitis who qualified for inclusion (n = 203), 39 patients (19.2%) had encephalitis of unknown aetiology. The case fatality in these patients was 12.8%. Among the survivors, 53% suffered from various neurological sequelae, most often attention and sensory deficits. Among the features at presentation that were associated with adverse outcome were older age, increased C-reactive protein, coma and a high percentage of polymorphonuclear cells in the cerebrospinal fluid. In conclusion, the outcome in an unselected cohort of patients with encephalitis of unknown aetiology was marked by substantial case fatality and by long-term neurological deficits in approximately one-half of the surviving patients. Certain features on admission predicted an unfavourable outcome.
Resumo:
Introduction The survival of patients admitted to an emergency department is determined by the severity of acute illness and the quality of care provided. The high number and the wide spectrum of severity of illness of admitted patients make an immediate assessment of all patients unrealistic. The aim of this study is to evaluate a scoring system based on readily available physiological parameters immediately after admission to an emergency department (ED) for the purpose of identification of at-risk patients. Methods This prospective observational cohort study includes 4,388 consecutive adult patients admitted via the ED of a 960-bed tertiary referral hospital over a period of six months. Occurrence of each of seven potential vital sign abnormalities (threat to airway, abnormal respiratory rate, oxygen saturation, systolic blood pressure, heart rate, low Glasgow Coma Scale and seizures) was collected and added up to generate the vital sign score (VSS). VSSinitial was defined as the VSS in the first 15 minutes after admission, VSSmax as the maximum VSS throughout the stay in ED. Occurrence of single vital sign abnormalities in the first 15 minutes and VSSinitial and VSSmax were evaluated as potential predictors of hospital mortality. Results Logistic regression analysis identified all evaluated single vital sign abnormalities except seizures and abnormal respiratory rate to be independent predictors of hospital mortality. Increasing VSSinitial and VSSmax were significantly correlated to hospital mortality (odds ratio (OR) 2.80, 95% confidence interval (CI) 2.50 to 3.14, P < 0.0001 for VSSinitial; OR 2.36, 95% CI 2.15 to 2.60, P < 0.0001 for VSSmax). The predictive power of VSS was highest if collected in the first 15 minutes after ED admission (log rank Chi-square 468.1, P < 0.0001 for VSSinitial;,log rank Chi square 361.5, P < 0.0001 for VSSmax). Conclusions Vital sign abnormalities and VSS collected in the first minutes after ED admission can identify patients at risk of an unfavourable outcome.
Resumo:
This is a European cohort study on predictors of spinal injury in adult (≥16 years) major trauma patients, using prospectively collected data of the Trauma Audit and Research Network from 1988 to 2009. Predictors for spinal fractures/dislocations or spinal cord injury were determined using univariate and multivariate logistic regression analysis. 250,584 patients were analysed. 24,000 patients (9.6%) sustained spinal fractures/dislocations alone and 4,489 (1.8%) sustained spinal cord injury with or without fractures/dislocations. Spinal injury patients had a median age of 44.5 years (IQR = 28.8-64.0) and Injury Severity Score of 9 (IQR = 4-17). 64.9% were male. 45% of patients suffered associated injuries to other body regions. Age <45 years (≥45 years OR 0.83-0.94), Glasgow Coma Score (GCS) 3-8 (OR 1.10, 95% CI 1.02-1.19), falls >2 m (OR 4.17, 95% CI 3.98-4.37), sports injuries (OR 2.79, 95% CI 2.41-3.23) and road traffic collisions (RTCs) (OR 1.91, 95% CI 1.83-2.00) were predictors for spinal fractures/dislocations. Age <45 years (≥45 years OR 0.78-0.90), male gender (female OR 0.78, 95% CI 0.72-0.85), GCS <15 (OR 1.36-1.93), associated chest injury (OR 1.10, 95% CI 1.01-1.20), sports injuries (OR 3.98, 95% CI 3.04-5.21), falls >2 m (OR 3.60, 95% CI 3.21-4.04), RTCs (OR 2.20, 95% CI 1.96-2.46) and shooting (OR 1.91, 95% CI 1.21-3.00) were predictors for spinal cord injury. Multilevel injury was found in 10.4% of fractures/dislocations and in 1.3% of cord injury patients. As spinal trauma occurred in >10% of major trauma patients, aggressive evaluation of the spine is warranted, especially, in males, patients <45 years, with a GCS <15, concomitant chest injury and/or dangerous injury mechanisms (falls >2 m, sports injuries, RTCs and shooting). Diagnostic imaging of the whole spine and a diligent search for associated injuries are substantial.
Resumo:
Refractory status epilepticus (RSE) has a mortality of 16-39%; coma induction is advocated for its management, but no comparative study has been performed. We aimed to assess the effectiveness (RSE control, adverse events) of the first course of propofol versus barbiturates in the treatment of RSE.
Resumo:
BACKGROUND: Mild traumatic brain injury (MTBI) defined as Glasgow Coma Scale (GCS) 14 or 15 has shown contradictory short- and long-term outcomes. The objective of this study was to correlate intra-cranial injuries (ICI) on CT scan to neurocognitive tests at admission and to complaints after 1 year. METHODS: Two hundred and five patients with MTBI underwent a CT scan and were examined with neurocognitive tests. After 1 year complaints were assessed by phone interviews. RESULTS: The neurocognitive tests in 51% of the patients showed significant deficits; there was no difference for patients with GCS 14-15, nor was there a difference between patients with ICI to patients without. After 1 year patients with ICI had significantly more complaints than patients without ICI, the most frequent complaint was headache and memory deficits. CONCLUSIONS: No correlation was found between GCS or ICI and the neurocognitive tests upon admission. After 1 year, patients with ICI have significantly more complaints than patients without ICI. No cost savings resulted by doing immediate CT scan on all.