20 resultados para Cohen-Grossberg neural network
Resumo:
Foreknowledge about upcoming events may be exploited to optimize behavioural responses. In a previous work, using an eye movement paradigm, we showed that different types of partial foreknowledge have different effects on saccadic efficiency. In the current study, we investigated the neural circuitry involved in processing of partial foreknowledge using functional magnetic resonance imaging. Fourteen subjects performed a mixed antisaccade, prosaccade paradigm with blocks of no foreknowledge, complete foreknowledge or partial foreknowledge about stimulus location, response direction or task. We found that saccadic foreknowledge is processed primarily within the well-known oculomotor network for saccades and antisaccades. Moreover, we found a consistent decrease in BOLD activity in the primary and secondary visual cortex in all foreknowledge conditions compared to the no-foreknowledge conditions. Furthermore we found that the different types of partial foreknowledge are processed in distinct brain areas: response foreknowledge is processed in the frontal eye field, while stimulus foreknowledge is processed in the frontal and parietal eye field. Task foreknowledge, however, revealed no positive BOLD correlate. Our results show different patterns of engagement in the saccade-related neural network depending upon precisely what type of information is known ahead.
Resumo:
The Default Mode Network (DMN) is a higher order functional neural network that displays activation during passive rest and deactivation during many types of cognitive tasks. Accordingly, the DMN is viewed to represent the neural correlate of internally-generated self-referential cognition. This hypothesis implies that the DMN requires the involvement of cognitive processes, like declarative memory. The present study thus examines the spatial and functional convergence of the DMN and the semantic memory system. Using an active block-design functional Magnetic Resonance Imaging (fMRI) paradigm and Independent Component Analysis (ICA), we trace the DMN and fMRI signal changes evoked by semantic, phonological and perceptual decision tasks upon visually-presented words. Our findings show less deactivation during semantic compared to the two non-semantic tasks for the entire DMN unit and within left-hemispheric DMN regions, i.e., the dorsal medial prefrontal cortex, the anterior cingulate cortex, the retrosplenial cortex, the angular gyrus, the middle temporal gyrus and the anterior temporal region, as well as the right cerebellum. These results demonstrate that well-known semantic regions are spatially and functionally involved in the DMN. The present study further supports the hypothesis of the DMN as an internal mentation system that involves declarative memory functions.
Resumo:
Quantitative characterisation of carotid atherosclerosis and classification into symptomatic or asymptomatic is crucial in planning optimal treatment of atheromatous plaque. The computer-aided diagnosis (CAD) system described in this paper can analyse ultrasound (US) images of carotid artery and classify them into symptomatic or asymptomatic based on their echogenicity characteristics. The CAD system consists of three modules: a) the feature extraction module, where first-order statistical (FOS) features and Laws' texture energy can be estimated, b) the dimensionality reduction module, where the number of features can be reduced using analysis of variance (ANOVA), and c) the classifier module consisting of a neural network (NN) trained by a novel hybrid method based on genetic algorithms (GAs) along with the back propagation algorithm. The hybrid method is able to select the most robust features, to adjust automatically the NN architecture and to optimise the classification performance. The performance is measured by the accuracy, sensitivity, specificity and the area under the receiver-operating characteristic (ROC) curve. The CAD design and development is based on images from 54 symptomatic and 54 asymptomatic plaques. This study demonstrates the ability of a CAD system based on US image analysis and a hybrid trained NN to identify atheromatous plaques at high risk of stroke.
Resumo:
BACKGROUND The diagnostic performance of biochemical scores and artificial neural network models for portal hypertension and cirrhosis is not well established. AIMS To assess diagnostic accuracy of six serum scores, artificial neural networks and liver stiffness measured by transient elastography, for diagnosing cirrhosis, clinically significant portal hypertension and oesophageal varices. METHODS 202 consecutive compensated patients requiring liver biopsy and hepatic venous pressure gradient measurement were included. Several serum tests (alone and combined into scores) and liver stiffness were measured. Artificial neural networks containing or not liver stiffness as input variable were also created. RESULTS The best non-invasive method for diagnosing cirrhosis, portal hypertension and oesophageal varices was liver stiffness (C-statistics=0.93, 0.94, and 0.90, respectively). Among serum tests/scores the best for diagnosing cirrhosis and portal hypertension and oesophageal varices were, respectively, Fibrosis-4, and Lok score. Artificial neural networks including liver stiffness had high diagnostic performance for cirrhosis, portal hypertension and oesophageal varices (accuracy>80%), but were not statistically superior to liver stiffness alone. CONCLUSIONS Liver stiffness was the best non-invasive method to assess the presence of cirrhosis, portal hypertension and oesophageal varices. The use of artificial neural networks integrating different non-invasive tests did not increase the diagnostic accuracy of liver stiffness alone.
Resumo:
Diet management is a key factor for the prevention and treatment of diet-related chronic diseases. Computer vision systems aim to provide automated food intake assessment using meal images. We propose a method for the recognition of already segmented food items in meal images. The method uses a 6-layer deep convolutional neural network to classify food image patches. For each food item, overlapping patches are extracted and classified and the class with the majority of votes is assigned to it. Experiments on a manually annotated dataset with 573 food items justified the choice of the involved components and proved the effectiveness of the proposed system yielding an overall accuracy of 84.9%.