19 resultados para Cobalt Radioisotopes
Resumo:
• Background and Aims The uptake, translocation and redistribution of the heavy metals zinc, manganese, nickel, cobalt and cadmium are relevant for plant nutrition as well as for the quality of harvested plant products. The long-distance transport of these heavy metals within the root system and the release to the shoot in young wheat (Triticum aestivum ‘Arina’) plants were investigated. • Methods After the application of 65Zn, 54Mn, 63Ni, 57Co and 109Cd for 24 h to one seminal root (the other seminal roots being excised) of 54-h-old wheat seedlings, the labelled plants were incubated for several days in hydroponic culture on a medium without radionuclides. • Key Results The content of 65Zn decreased quickly in the labelled part of the root. After the transfer of 65Zn from the roots to the shoot, a further redistribution in the phloem from older to younger leaves was observed. In contrast to 65Zn, 109Cd was released more slowly from the roots to the leaves and was subsequently redistributed in the phloem to the youngest leaves only at trace levels. The content of 63Ni decreased quickly in the labelled part of the root, moving to the newly formed parts of the root system and also accumulating transiently in the expanding leaves. The 54Mn content decreased quickly in the labelled part of the root and increased simultaneously in leaf 1. A strong retention in the labelled part of the root was observed after supplying 57Co. • Conclusions The dynamics of redistribution of 65Zn, 54Mn, 63Ni, 57Co and 109Cd differed considerably. The rapid redistribution of 63Ni from older to younger leaves throughout the experiment indicated a high mobility in the phloem, while 54Mn was mobile only in the xylem and 57Co was retained in the labelled root without being loaded into the xylem.
Resumo:
The phloem mobility of heavy metals is relevant to the redistribution of micronutrients and pollutants and, ultimately, to the quality of harvested plant parts. The relative mobility in wheat may vary considerably between different cations. In the study reported here, radio-labeled nickel (Ni), cobalt (Co), manganese (Mn), zinc (Zn) and cadmium (Cd) were introduced into either intact young winter wheat (Triticum aestivum L. cv. Arina) via a leaf flap, or detached maturing shoots via the cut stem. Elements fed into the lamina of the second leaf of 21-day-old plants were translocated to the younger (expanding) leaves and to the roots but not or only in trace amounts to the first (already fully expanded) leaf. The 63Ni and 65Zn were exported more rapidly compared with the other heavy metals. Most of 54Mn was retained in the originally labeled leaf. The peduncle of some maturing shoots was steam-girdled below the ear to distinguish between xylem and phloem transport. This phloem interruption reduced the content of 63Ni in the ear to about 25%. Intermediate effects were observed for 65Zn, 57Co, and 109Cd. Total 54Mn accumulation in the ear was hardly affected by steam-girdling, indicating a transport of this element within the xylem to the ear. These results suggest that the relative phloem mobility of Ni and Zn in young wheat plants and in maturing wheat shoots is higher than the mobility of Co and Cd, whereas the mobility of Mn is very low.
Resumo:
Detached wheat shoots (ear with peduncle and flag leaf) were incubated for 4 d in a solution containing 1 mM RbCl and 1 mM SrCl2 as well as 10, 40 or 160 µM NiCl2 and CoCl2. The phloem of some plants was interrupted by steam-girdling the stem below the ear to distinguish between xylem and phloem transport. The phloem-immobile Sr flowed mainly to the leaf lamina and to the glumes via the xylem. The Sr transport was not sensitive to steam-girdling. In contrast, the phloem-mobile Rb accumulated during the incubation time mainly in the stem and the leaf sheath. The Rb transport to the grains was impaired by steam-girdling as well as by elevated Ni and Co concentrations in the incubation solution indicating that Rb was transported via the phloem to the maturing grains and that this transport was affected by the heavy metals. Ni was removed more efficiently from the xylem in the peduncle than Co (but far less efficiently than Rb). It became evident that the two heavy metals can also be transferred from the xylem to the phloem in the stem of wheat and reach the maturing grains via the phloem.
Resumo:
Cobalt, nickel and strontium were introduced via flaps into leaf laminas or into the stem of maturing, intact winter wheat (Triticum aestivum L., cv. `Arina') grown under natural conditions in a field. Long-distance transport of these elements and the influence of the application date and of different application positions were investigated. The dry-matter accumulation in the grains was not markedly affected by the treatments as compared to untreated control plants. The phloem-immobile strontium served as a marker for the distribution of the xylem sap in the plants. After foliar application, nickel accumulated more rapidly and in higher quantities in the grains than cobalt. Therefore, nickel has a slightly better phloem mobility than cobalt. Regardless of the application date, a higher percentage of the two elements was transported from the flag leaf lamina than from the second or third lamina from the top to the grains. These results indicate that the leaf position is highly relevant for the transfer of the heavy metals investigated to the ear. Introduction into the stem led to a higher accumulation of nickel and cobalt in the grains than introduction into one of the leaves. An earlier feeding date caused a higher accumulation of nickel and cobalt in the grains when introduced into the stem. In contrast, no major differences between earlier and later feeding dates were detected when the elements were introduced into the leaves. Losses of the applied elements were detected during maturation and can be explained by leakage in the rain.