17 resultados para Closed loop stability
Resumo:
The most important objective of clinical classifications of slipped capital femoral epiphysis (SCFE) is to identify hips associated with a high risk of avascular necrosis (AVN)--so-called unstable or acute slips; however, closed surgery makes confirmation of physeal stability difficult. Performing the capital realignment procedure in SCFE treatment we observed that clinical estimation of physeal stability did not always correlate with intraoperative findings at open surgery. This motivated us to perform a systematic comparison of the clinical classification systems with the intraoperative observations.
Resumo:
We derive the fermion loop formulation for the supersymmetric nonlinear O(N) sigma model by performing a hopping expansion using Wilson fermions. In this formulation the fermionic contribution to the partition function becomes a sum over all possible closed non-oriented fermion loop configurations. The interaction between the bosonic and fermionic degrees of freedom is encoded in the constraints arising from the supersymmetry and induces flavour changing fermion loops. For N ≥ 3 this leads to fermion loops which are no longer self-avoiding and hence to a potential sign problem. Since we use Wilson fermions the bare mass needs to be tuned to the chiral point. For N = 2 we determine the critical point and present boson and fermion masses in the critical regime.