18 resultados para Classical nuclear import pathway


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are among the most abundant phospholipids in biological membranes. In many eukaryotes, the CDP-ethanolamine and CDP-choline branches of the Kennedy pathway represent major and often essential routes for the production of PE and PC, with ethanolamine and choline/ethanolamine phosphotransferases (EPT and CEPT, respectively) catalysing the last reactions in the respective pathways. Although the site of PE and PC synthesis is commonly known to be the endoplasmic reticulum (ER), detailed information on the localization of the different phosphotransferases is lacking. In the unicellular parasite, Trypanosoma brucei, both branches of the Kennedy pathway are essential for cell growth in culture. We have previously reported that T. brucei EPT (TbEPT) catalyses the production of ether-type PE molecular species while T. brucei CEPT (TbCEPT) synthesizes diacyl-type PE and PC molecular species. We now show that the two enzymes localize to different sub-compartments of the ER. By expressing a series of tagged forms of the two enzymes in T. brucei parasites, in combination with sub-cellular fractionation and enzyme activity measurements, TbEPT was found exclusively in the perinuclear ER, a distinct area located close to but distinct from the nuclear membrane. In contrast, TbCEPT was detected in the bulk ER.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy shocks like the Fukushima accident can have important political consequences. This article examines their impact on collaboration patterns between collective actors in policy processes. It argues that external shocks create both behavioral uncertainty, meaning that actors do not know about other actors' preferences, and policy uncertainty on the choice and consequences of policy instruments. The context of uncertainty interacts with classical drivers of actor collaboration in policy processes. The analysis is based on a dataset comprising interview and survey data on political actors in two subsequent policy processes in Switzerland and Exponential Random Graph Models for network data. Results first show that under uncertainty, collaboration of actors in policy processes is less based on similar preferences than in stable contexts, but trust and knowledge of other actors are more important. Second, under uncertainty, scientific actors are not preferred collaboration partners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infection of cattle with the protozoan Theileria parva results in uncontrolled T lymphocyte proliferation resulting in lesions resembling multicentric lymphoma. Parasitized cells exhibit autocrine growth characterized by persistent translocation of the transcriptional regulatory factor nuclear factor kappaB (NFkappaB) to the nucleus and consequent enhanced expression of interleukin 2 and the interleukin 2 receptor. How T. parva induces persistent NFkappaB activation, required for T cell activation and proliferation, is unknown. We hypothesized that the parasite induces degradation of the IkappaB molecules which normally sequester NFkappaB in the cytoplasm and that continuous degradation requires viable parasites. Using T. parva-infected T cells, we showed that the parasite mediates continuous phosphorylation and proteolysis of IkappaBalpha. However, IkappaBalpha reaccumulated to high levels in parasitized cells, which indicated that T. parva did not alter the normal NFkappaB-mediated positive feedback loop which restores cytoplasmic IkappaBalpha. In contrast, T. parva mediated continuous degradation of IkappaBbeta resulting in persistently low cytoplasmic IkappaBbeta levels. Normal IkappaBbeta levels were only restored following T. parva killing, indicating that viable parasites are required for IkappaBbeta degradation. Treatment of T. parva-infected cells with pyrrolidine dithiocarbamate, a metal chelator, blocked both IkappaB degradation and consequent enhanced expression of NFkappaB dependent genes. However treatment using the antioxidant N-acetylcysteine had no effect on either IkappaB levels or NFkappaB activation, indicating that the parasite subverts the normal IkappaB regulatory pathway downstream of the requirement for reactive oxygen intermediates. Identification of the critical points regulated by T. parva may provide new approaches for disease control as well as increase our understanding of normal T cell function.